IDEAS home Printed from
   My bibliography  Save this article

Online learning and forecast combination in unbalanced panels


  • Kajal Lahiri
  • Huaming Peng
  • Yongchen Zhao


This article evaluates the performance of a few newly proposed online forecast combination algorithms and compares them with some of the existing ones including the simple average and that of Bates and Granger (1969). We derive asymptotic results for the new algorithms that justify certain established approaches to forecast combination including trimming, clustering, weighting, and shrinkage. We also show that when implemented on unbalanced panels, different combination algorithms implicitly impute missing data differently, so that the performance of the resulting combined forecasts are not comparable. After explicitly imputing the missing observations in the U.S. Survey of Professional Forecasters (SPF) over 1968 IV-2013 I, we find that the equally weighted average continues to be hard to beat, but the new algorithms can potentially deliver superior performance at shorter horizons, especially during periods of volatility clustering and structural breaks.

Suggested Citation

  • Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2017. "Online learning and forecast combination in unbalanced panels," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 257-288, March.
  • Handle: RePEc:taf:emetrv:v:36:y:2017:i:1-3:p:257-288
    DOI: 10.1080/07474938.2015.1114550

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kajal Lahiri & Huaming Peng & Xuguang Sheng, 2015. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," CESifo Working Paper Series 5468, CESifo.
    2. Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
    3. Meryem Duygun & Jiaqi Hao & Anders Isaksson & Robin C. Sickles, 2017. "World Productivity Growth: A Model Averaging Approach," Pacific Economic Review, Wiley Blackwell, vol. 22(4), pages 587-619, October.
    4. Ulrich Hounyo & Kajal Lahiri, 2021. "Estimating the Variance of a Combined Forecast: Bootstrap-Based Approach," CREATES Research Papers 2021-14, Department of Economics and Business Economics, Aarhus University.
    5. Glas, Alexander & Hartmann, Matthias, 2016. "Inflation uncertainty, disagreement and monetary policy: Evidence from the ECB Survey of Professional Forecasters," Journal of Empirical Finance, Elsevier, vol. 39(PB), pages 215-228.
    6. Antonio Martin Arroyo & Aranzazu de Juan Fernandez, 2020. "Split-then-Combine simplex combination and selection of forecasters," Papers 2012.11935,
    7. Constantin Bürgi & Tara M. Sinclair, 2017. "A nonparametric approach to identifying a subset of forecasters that outperforms the simple average," Empirical Economics, Springer, vol. 53(1), pages 101-115, August.
    8. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    9. Yongchen Zhao, 2015. "Robustness of Forecast Combination in Unstable Environment: A Monte Carlo Study of Advanced Algorithms," Working Papers 2015-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    10. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:36:y:2017:i:1-3:p:257-288. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.