IDEAS home Printed from https://ideas.repec.org/f/ppe529.html
   My authors  Follow this author

Huaming Peng

Personal Details

First Name:Huaming
Middle Name:
Last Name:Peng
Suffix:
RePEc Short-ID:ppe529
[This author has chosen not to make the email address public]
Terminal Degree:2009 Economics Department; Yale University (from RePEc Genealogy)

Affiliation

Department of Economics
Rensselaer Polytechnic Institute

Troy, New York (United States)
http://www.economics.rpi.edu/
RePEc:edi:derpius (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Kajal Lahiri & Zhongwen Liang & Huaming Peng, 2017. "The Local Power of the IPS Test with Both Initial Conditions and Incidental Trends," CESifo Working Paper Series 6313, CESifo.
  2. Kajal Lahiri & Huaming Peng & Xuguang Sheng, 2015. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," CESifo Working Paper Series 5468, CESifo.
  3. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Testing the Value of Probability Forecasts for Calibrated Combining," Discussion Papers 13-02, University at Albany, SUNY, Department of Economics.
  4. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Machine Learning and Forecast Combination in Incomplete Panels," Discussion Papers 13-01, University at Albany, SUNY, Department of Economics.

Articles

  1. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2017. "Online learning and forecast combination in unbalanced panels," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 257-288, March.
  2. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Kajal Lahiri & Huaming Peng & Xuguang Sheng, 2015. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," CESifo Working Paper Series 5468, CESifo.

    Cited by:

    1. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2021. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Working Papers 2021-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    2. Issler, João Victor & Soares, Ana Flávia, 2019. "Central Bank credibility and inflation expectations: a microfounded forecasting approach," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 812, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    3. Knüppel, Malte & Schultefrankenfeld, Guido, 2013. "The empirical (ir)relevance of the interest rate assumption for central bank forecasts," Discussion Papers 11/2013, Deutsche Bundesbank.
    4. Monique Reid & Pierre Siklos, 2024. "Firm level expectations and macroeconomic conditions underpinnings and disagreement," Working Papers 11058, South African Reserve Bank.
    5. Pierre L. Siklos, 2016. "Forecast Disagreement and the Inflation Outlook: New International Evidence," IMES Discussion Paper Series 16-E-03, Institute for Monetary and Economic Studies, Bank of Japan.
    6. Dovern, Jonas & Hartmann, Matthias, 2016. "Forecast Performance, Disagreement, and Heterogeneous Signal-to-Noise Ratios," Working Papers 0611, University of Heidelberg, Department of Economics.
    7. Pierre L. Siklos, 2017. "What has publishing inflation forecasts accomplished? Central banks and their competitors," CAMA Working Papers 2017-33, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017. "Applying a microfounded-forecasting approach to predict Brazilian inflation," Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
    9. Wagner Piazza Gaglianone & João Victor Issler, 2014. "Microfounded Forecasting," Working Papers Series 372, Central Bank of Brazil, Research Department.
    10. Reifschneider, David & Tulip, Peter, 2019. "Gauging the uncertainty of the economic outlook using historical forecasting errors: The Federal Reserve’s approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1564-1582.
    11. Alexander Glas & Matthias Hartmann, 2020. "Uncertainty measures from partially rounded probabilistic forecast surveys," Working Papers 427, University of Milano-Bicocca, Department of Economics, revised Jan 2020.
    12. Michael Clements, 2016. "Are Macroeconomic Density Forecasts Informative?," ICMA Centre Discussion Papers in Finance icma-dp2016-02, Henley Business School, University of Reading.
    13. Philip Hans Franses, 2021. "Modeling Judgment in Macroeconomic Forecasts," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 401-417, December.
    14. Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
    15. Knüppel, Malte & Krüger, Fabian, 2019. "Forecast uncertainty, disagreement, and the linear pool," Discussion Papers 28/2019, Deutsche Bundesbank.

  2. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Testing the Value of Probability Forecasts for Calibrated Combining," Discussion Papers 13-02, University at Albany, SUNY, Department of Economics.

    Cited by:

    1. Constantin Bürgi & Tara M. Sinclair, 2015. "A Nonparametric Approach to Identifying a Subset of Forecasters that Outperforms the Simple Average," Working Papers 2015-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    2. Graham Elliott, 2017. "Forecast combination when outcomes are difficult to predict," Empirical Economics, Springer, vol. 53(1), pages 7-20, August.
    3. Herman O. Stekler & Yongchen Zhao, 2016. "Predicting U.S. Business Cycle Turning Points Using Real-Time Diffusion Indexes Based on a Large Data Set," Working Papers 2016-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    5. Yuri S. Popkov & Yuri A. Dubnov & Alexey Yu. Popkov, 2016. "New Method of Randomized Forecasting Using Entropy-Robust Estimation: Application to the World Population Prediction," Mathematics, MDPI, vol. 4(1), pages 1-16, March.
    6. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.

  3. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Machine Learning and Forecast Combination in Incomplete Panels," Discussion Papers 13-01, University at Albany, SUNY, Department of Economics.

    Cited by:

    1. Cheng, Gang & Yang, Yuhong, 2015. "Forecast combination with outlier protection," International Journal of Forecasting, Elsevier, vol. 31(2), pages 223-237.
    2. Graham Elliott, 2017. "Forecast combination when outcomes are difficult to predict," Empirical Economics, Springer, vol. 53(1), pages 7-20, August.
    3. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    5. Zvi Schwartz & Timothy Webb & Jean-Pierre I van der Rest & Larissa Koupriouchina, 2021. "Enhancing the accuracy of revenue management system forecasts: The impact of machine and human learning on the effectiveness of hotel occupancy forecast combinations across multiple forecasting horizo," Tourism Economics, , vol. 27(2), pages 273-291, March.
    6. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2015. "On the Forecast Combination Puzzle," Papers 1505.00475, arXiv.org.

Articles

  1. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2017. "Online learning and forecast combination in unbalanced panels," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 257-288, March.

    Cited by:

    1. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2021. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Working Papers 2021-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    2. Duygun, Meryem & Hao, Jiaqi & Isaksson, Anders & Sickles, Robin C., 2015. "World Productivity Growth: A Model Averaging Approach," Working Papers 15-011, Rice University, Department of Economics.
    3. Constantin Bürgi & Tara M. Sinclair, 2015. "A Nonparametric Approach to Identifying a Subset of Forecasters that Outperforms the Simple Average," Working Papers 2015-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. Glas, Alexander & Hartmann, Matthias, 2016. "Inflation uncertainty, disagreement and monetary policy: Evidence from the ECB Survey of Professional Forecasters," VfS Annual Conference 2016 (Augsburg): Demographic Change 145888, Verein für Socialpolitik / German Economic Association.
    5. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    6. Constantin Rudolf Salomo Bürgi, 2023. "How to deal with missing observations in surveys of professional forecasters," Journal of Applied Economics, Taylor & Francis Journals, vol. 26(1), pages 2185975-218, December.
    7. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    8. Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
    9. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    10. Antonio Martin Arroyo & Aranzazu de Juan Fernandez, 2020. "Split-then-Combine simplex combination and selection of forecasters," Papers 2012.11935, arXiv.org.
    11. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
    12. Ulrich Hounyo & Kajal Lahiri, 2023. "Are Some Forecasters Really Better than Others? A Note," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(2-3), pages 577-593, March.

  2. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    See citations under working paper version above.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (1) 2017-10-29
  2. NEP-ETS: Econometric Time Series (1) 2017-10-29

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Huaming Peng should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.