IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v53y2017i1d10.1007_s00181-016-1152-y.html
   My bibliography  Save this article

A nonparametric approach to identifying a subset of forecasters that outperforms the simple average

Author

Listed:
  • Constantin Bürgi

    (The George Washington University)

  • Tara M. Sinclair

    (The George Washington University)

Abstract

Empirical studies in the forecast combination literature have shown that it is notoriously difficult to improve upon the simple average despite the availability of optimal combination weights. In particular, historical performance-based combination approaches do not select forecasters that improve upon the simple average going forward. This paper shows that this is due to the high correlation among forecasters, which only by chance causes some individuals to have lower root-mean-squared error (RMSE) than the simple average. We introduce a new nonparametric approach to eliminate forecasters who perform well based on chance as well as poor performers. This leaves a subset of forecasters with better performance in subsequent periods. The average of this group improves upon the simple average in the SPF particularly for bond yields where some forecasters may be more likely to have superior forecasting ability.

Suggested Citation

  • Constantin Bürgi & Tara M. Sinclair, 2017. "A nonparametric approach to identifying a subset of forecasters that outperforms the simple average," Empirical Economics, Springer, vol. 53(1), pages 101-115, August.
  • Handle: RePEc:spr:empeco:v:53:y:2017:i:1:d:10.1007_s00181-016-1152-y
    DOI: 10.1007/s00181-016-1152-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-016-1152-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-016-1152-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    2. Antonello D’Agostino & Kieran Mcquinn & Karl Whelan, 2012. "Are Some Forecasters Really Better Than Others?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(4), pages 715-732, June.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Yongchen Zhao, 2015. "Robustness of Forecast Combination in Unstable Environment: A Monte Carlo Study of Advanced Algorithms," Working Papers 2015-04, Towson University, Department of Economics, revised Mar 2020.
    5. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2017. "Online learning and forecast combination in unbalanced panels," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 257-288, March.
    6. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
    7. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
    8. Lahiri Kajal & Yang Liu, 2016. "A non-linear forecast combination procedure for binary outcomes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 421-440, September.
    9. Gamber, Edward N. & Smith, Julie K. & McNamara, Dylan C., 2014. "Where is the Fed in the distribution of forecasters?," Journal of Policy Modeling, Elsevier, vol. 36(2), pages 296-312.
    10. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    11. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    12. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    13. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    14. Poncela, Pilar & Rodríguez, Julio & Sánchez-Mangas, Rocío & Senra, Eva, 2011. "Forecast combination through dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 27(2), pages 224-237, April.
    15. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    16. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Density characteristics and density forecast performance: a panel analysis," Empirical Economics, Springer, vol. 48(3), pages 1203-1231, May.
    17. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    18. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    19. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    20. Batchelor, R A, 1990. "All Forecasters Are Equal," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 143-144, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    2. Constantin Bürgi & Tara M. Sinclair, 2021. "What does forecaster disagreement tell us about the state of the economy?," Applied Economics Letters, Taylor & Francis Journals, vol. 28(1), pages 49-53, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    2. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    3. Constantin Burgi, 2015. "Can A Subset Of Forecasters Beat The Simple Average In The Spf?," Working Papers 2015-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. Kajal Lahiri & Huaming Peng & Xuguang Sheng, 2015. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," CESifo Working Paper Series 5468, CESifo.
    5. Victor Lopez-Perez, 2016. "Macroeconomic Forecast Uncertainty In The Euro Area," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(1), pages 9-41, March.
    6. Björn Fastrich & Peter Winker, 2014. "Combining Forecasts with Missing Data: Making Use of Portfolio Theory," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 127-152, August.
    7. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    8. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    9. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    10. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    11. Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.
    12. Todd E. Clark & Taeyoung Doh, 2011. "A Bayesian evaluation of alternative models of trend inflation," Working Papers (Old Series) 1134, Federal Reserve Bank of Cleveland.
    13. Ravazzolo Francesco & Vahey Shaun P., 2014. "Forecast densities for economic aggregates from disaggregate ensembles," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 1-15, September.
    14. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra.
    15. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Can Macroeconomists Forecast Risk? Event-Based Evidence from the Euro-Area SPF," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 1-46, December.
    16. Yongchen Zhao, 2015. "Robustness of Forecast Combination in Unstable Environment: A Monte Carlo Study of Advanced Algorithms," Working Papers 2015-04, Towson University, Department of Economics, revised Mar 2020.
    17. Francis X. Diebold & Minchul Shin, 2017. "Beating the Simple Average: Egalitarian LASSO for Combining Economic Forecasts," PIER Working Paper Archive 17-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 20 Aug 2017.
    18. Pilar Poncela & Eva Senra, 2017. "Measuring uncertainty and assessing its predictive power in the euro area," Empirical Economics, Springer, vol. 53(1), pages 165-182, August.
    19. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    20. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.

    More about this item

    Keywords

    Forecast combination; Forecast evaluation; Multiple model comparisons; Real-time data; Survey of professional forecasters;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:53:y:2017:i:1:d:10.1007_s00181-016-1152-y. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.