IDEAS home Printed from
   My bibliography  Save this article

Macroeconomic Uncertainty Indices Based on Nowcast and Forecast Error Distributions


  • Barbara Rossi
  • Tatevik Sekhposyan


We propose new indices to measure macroeconomic uncertainty. The indices measure how unexpected a realization of a representative macroeconomic variable is relative to the unconditional forecast error distribution. We use forecast error distributions based on the nowcasts and forecasts of the Survey of Professional Forecasters. We further compare the new indices with those proposed in the literature and assess their macroeconomic impact.

Suggested Citation

  • Barbara Rossi & Tatevik Sekhposyan, 2015. "Macroeconomic Uncertainty Indices Based on Nowcast and Forecast Error Distributions," American Economic Review, American Economic Association, vol. 105(5), pages 650-655, May.
  • Handle: RePEc:aea:aecrev:v:105:y:2015:i:5:p:650-55
    Note: DOI: 10.1257/aer.p20151124

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    Other versions of this item:

    References listed on IDEAS

    1. Segal, Gill & Shaliastovich, Ivan & Yaron, Amir, 2015. "Good and bad uncertainty: Macroeconomic and financial market implications," Journal of Financial Economics, Elsevier, vol. 117(2), pages 369-397.
    2. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    3. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    4. Rossi, Barbara & Sekhposyan, Tatevik, 2014. "Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set," International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    2. Bonciani, Dario, 2015. "Estimating the effects of uncertainty over the business cycle," MPRA Paper 65921, University Library of Munich, Germany.
    3. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    4. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    5. Danilo Cascaldi‐Garcia & Ana Beatriz Galvao, 2021. "News and Uncertainty Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(4), pages 779-811, June.
    6. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    7. Suh, Hyunduk & Yang, Jin Young, 2021. "Global uncertainty and Global Economic Policy Uncertainty: Different implications for firm investment," Economics Letters, Elsevier, vol. 200(C).
    8. Chiu, Yen-Chen, 2020. "Macroeconomic uncertainty, information competition, and liquidity," Finance Research Letters, Elsevier, vol. 34(C).
    9. Dohyoung Kwon, 2022. "The impacts of oil price shocks and United States economic uncertainty on global stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1595-1607, April.
    10. Barbara Rossi & Tatevik Sekhposyan, 2015. "Macroeconomic Uncertainty Indices for the Euro Area and Individual Member Countries," Working Papers 820, Barcelona School of Economics.
    11. Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021. "Forecasting the production side of GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.
    12. Dew-Becker, Ian & Giglio, Stefano & Kelly, Bryan, 2021. "Hedging macroeconomic and financial uncertainty and volatility," Journal of Financial Economics, Elsevier, vol. 142(1), pages 23-45.
    13. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    14. Luca Gambetti & Dimitris Korobilis & John D. Tsoukalas & Francesco Zanetti, 2023. "Agreed and Disagreed Uncertainty," Working Paper series 23-01, Rimini Centre for Economic Analysis.
    15. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    16. Francisco Serranito & Julien Vauday & Nicolas Himounet, 2022. "A Positive Effect of Uncertainty Shocks on the Economy: Is the Chase Over ?," Working Papers hal-04159792, HAL.
    17. Dimitris Korobilis & Maximilian Schroder, 2022. "Probabilistic quantile factor analysis," Papers 2212.10301,, revised Dec 2022.
    18. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    19. Dario Caldara & Chiara Scotti & Molin Zhong, 2021. "Macroeconomic and Financial Risks: A Tale of Mean and Volatility," International Finance Discussion Papers 1326, Board of Governors of the Federal Reserve System (U.S.).
    20. Konstantinos Metaxoglou & Davide Pettenuzzo & Aaron Smith, 2019. "Option-Implied Equity Premium Predictions via Entropic Tilting," Journal of Financial Econometrics, Oxford University Press, vol. 17(4), pages 559-586.

    More about this item

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:105:y:2015:i:5:p:650-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.