IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/a6228ada-1ab5-47ee-9d23-4405a780d654.html
   My bibliography  Save this paper

Semiparametric Robust Estimation of Truncated and Censored Regression Models

Author

Listed:
  • Cizek, P.

    (Tilburg University, Center For Economic Research)

Abstract

Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semipara- metric general trimmed estimator (GTE) of truncated and censored regression, which is highly robust and relatively imprecise. To improve its performance, we also propose data-adaptive and one-step trimmed estimators. We derive the robust and asymptotic properties of all proposed estimators and show that the one-step estimators (e.g., one-step SCLS) are as robust as GTE and are asymptotically equivalent to the original estimator (e.g., SCLS). The infinite-sample properties of existing and proposed estimators are studied by means of Monte Carlo simulations.

Suggested Citation

  • Cizek, P., 2008. "Semiparametric Robust Estimation of Truncated and Censored Regression Models," Discussion Paper 2008-34, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:a6228ada-1ab5-47ee-9d23-4405a780d654
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/portal/files/975436/2008-34.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-1460, November.
    2. Arthur Lewbel & Oliver Linton, 2002. "Nonparametric Censored and Truncated Regression," Econometrica, Econometric Society, vol. 70(2), pages 765-779, March.
    3. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    4. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    5. Arthur Lewbel, 1998. "Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors," Econometrica, Econometric Society, vol. 66(1), pages 105-122, January.
    6. Arabmazar, Abbas & Schmidt, Peter, 1982. "An Investigation of the Robustness of the Tobit Estimator to Non-Normality," Econometrica, Econometric Society, vol. 50(4), pages 1055-1063, July.
    7. Debruyne, M. & Hubert, M. & Portnoy, S. & Vanden Branden, K., 2008. "Censored depth quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1604-1614, January.
    8. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
    9. Cízek, Pavel, 2011. "Semiparametrically weighted robust estimation of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 774-788, January.
    10. Lee, Myoung-jae, 1993. "Quadratic mode regression," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 1-19.
    11. Peracchi, Franco, 1990. "Bounded-influence estimators for the tobit model," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 107-126.
    12. Ortelli, Claudio & Trojani, Fabio, 2005. "Robust efficient method of moments," Journal of Econometrics, Elsevier, vol. 128(1), pages 69-97, September.
    13. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    14. Willems, Gert & Van Aelst, Stefan, 2005. "Fast and robust bootstrap for LTS," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 703-715, April.
    15. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    16. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    17. Wagenvoort, Rien & Waldmann, Robert, 2002. "On B-robust instrumental variable estimation of the linear model with panel data," Journal of Econometrics, Elsevier, vol. 106(2), pages 297-324, February.
    18. He, Xuming, et al, 1990. "Tail Behavior of Regression Estimators and Their Breakdown Points," Econometrica, Econometric Society, vol. 58(5), pages 1195-1214, September.
    19. Luojia Hu, 2002. "Estimation of a Censored Dynamic Panel Data Model," Econometrica, Econometric Society, vol. 70(6), pages 2499-2517, November.
    20. Gerfin, Michael, 1996. "Parametric and Semi-parametric Estimation of the Binary Response Model of Labor Market Participation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 321-339, May-June.
    21. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    22. Peter Hall & Brett Presnell, 1999. "Biased Bootstrap Methods for Reducing the Effects of Contamination," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 661-680.
    23. Santos Silva, J M C, 2001. "Influence Diagnostics and Estimation Algorithms for Powell's SCLS," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 55-62, January.
    24. Krishnakumar, J. & Ronchetti, E., 1997. "Robust estimators for simultaneous equations models," Journal of Econometrics, Elsevier, vol. 78(2), pages 295-314, June.
    25. Maria Caterina Bramati & Christophe Croux, 2007. "Robust estimators for the fixed effects panel data model," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 521-540, November.
    26. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    27. Krasker, William S & Welsch, Roy E, 1985. "Resistant Estimation for Simultaneous-Equations Models Using Weighted Instrumental Variables," Econometrica, Econometric Society, vol. 53(6), pages 1475-1488, November.
    28. Honore, Bo E. & Powell, James L., 1994. "Pairwise difference estimators of censored and truncated regression models," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 241-278.
    29. Marc G. Genton & André Lucas, 2003. "Comprehensive definitions of breakdown points for independent and dependent observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 81-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven Caudill, 2012. "A partially adaptive estimator for the censored regression model based on a mixture of normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 121-137, June.

    More about this item

    Keywords

    Asymptotic normality; censored regression; one-step estimation; robust esti- mation; trimming; truncated regression;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:a6228ada-1ab5-47ee-9d23-4405a780d654. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman). General contact details of provider: http://center.uvt.nl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.