IDEAS home Printed from
   My bibliography  Save this article

Inference on endogenously censored regression models using conditional moment inequalities


  • Khan, Shakeeb
  • Tamer, Elie


Under a quantile restriction, randomly censored regression models can be written in terms of conditional moment inequalities. We study the identified features of these moment inequalities with respect to the regression parameters where we allow for covariate dependent censoring, endogenous censoring and endogenous regressors. These inequalities restrict the parameters to a set. We show regular point identification can be achieved under a set of interpretable sufficient conditions. We then provide a simple way to convert conditional moment inequalities into unconditional ones while preserving the informational content. Our method obviates the need for nonparametric estimation, which would require the selection of smoothing parameters and trimming procedures. Without the point identification conditions, our objective function can be used to do inference on the partially identified parameter. Maintaining the point identification conditions, we propose a quantile minimum distance estimator which converges at the parametric rate to the parameter vector of interest, and has an asymptotically normal distribution. A small scale simulation study and an application using drug relapse data demonstrate satisfactory finite sample performance.

Suggested Citation

  • Khan, Shakeeb & Tamer, Elie, 2009. "Inference on endogenously censored regression models using conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 152(2), pages 104-119, October.
  • Handle: RePEc:eee:econom:v:152:y:2009:i:2:p:104-119

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bo E. Honoré & Adriana Lleras-Muney, 2006. "Bounds in Competing Risks Models and the War on Cancer," Econometrica, Econometric Society, vol. 74(6), pages 1675-1698, November.
    2. Manuel A. Domínguez & Ignacio N. Lobato, 2004. "Consistent Estimation of Models Defined by Conditional Moment Restrictions," Econometrica, Econometric Society, vol. 72(5), pages 1601-1615, September.
    3. Jaap H. Abbring & Gerard J. van den Berg, 2003. "The identifiability of the mixed proportional hazards competing risks model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 701-710.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    6. Han Hong & Elie Tamer, 2003. "Inference in Censored Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 71(3), pages 905-932, May.
    7. Blundell, Richard & Powell, James L., 2007. "Censored regression quantiles with endogenous regressors," Journal of Econometrics, Elsevier, vol. 141(1), pages 65-83, November.
    8. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," Review of Economic Studies, Oxford University Press, vol. 71(3), pages 655-679.
    9. Chen, Xiaohong & Fan, Yanqin, 1999. "Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series," Journal of Econometrics, Elsevier, vol. 91(2), pages 373-401, August.
    10. Bijwaard, Govert E. & Ridder, Geert, 2005. "Correcting for selective compliance in a re-employment bonus experiment," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 77-111.
    11. Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 497-517.
    12. Heckman, James J & Honore, Bo E, 1990. "The Empirical Content of the Roy Model," Econometrica, Econometric Society, vol. 58(5), pages 1121-1149, September.
    13. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    14. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    15. Stephen R. Cosslett, 2004. "Efficient Semiparametric Estimation of Censored and Truncated Regressions via a Smoothed Self-Consistency Equation," Econometrica, Econometric Society, vol. 72(4), pages 1277-1293, July.
    16. Honore, Bo & Khan, Shakeeb & Powell, James L., 2002. "Quantile regression under random censoring," Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
    17. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-1458, November.
    18. Sherman, Robert P., 1994. "U-Processes in the Analysis of a Generalized Semiparametric Regression Estimator," Econometric Theory, Cambridge University Press, vol. 10(02), pages 372-395, June.
    19. Khan, Shakeeb & Tamer, Elie, 2007. "Partial rank estimation of duration models with general forms of censoring," Journal of Econometrics, Elsevier, vol. 136(1), pages 251-280, January.
    20. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    21. Honore, Bo E. & Powell, James L., 1994. "Pairwise difference estimators of censored and truncated regression models," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 241-278.
    22. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    23. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    24. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    25. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:152:y:2009:i:2:p:104-119. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.