IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v215y2020i1p239-256.html
   My bibliography  Save this article

Semiparametric estimation of a censored regression model with endogeneity

Author

Listed:
  • Chen, Songnian
  • Wang, Qian

Abstract

Censoring and endogeneity are common in empirical applications. However, the existing semiparametric estimation methods for the censored regression model with endogeneity under an independence restriction are associated with some drawbacks. In this paper we propose a new semiparametric estimator that overcomes these drawbacks. We derive conditional quantile moment conditions for all the conditional quantiles and propose a moment-based estimator. In particular, we construct two types of moment conditions and develop a computationally attractive estimator. We show that our estimator is consistent and asymptotic normal. A Monte Carlo study indicates that our estimator performs well in finite samples and compares favorably with existing methods.

Suggested Citation

  • Chen, Songnian & Wang, Qian, 2020. "Semiparametric estimation of a censored regression model with endogeneity," Journal of Econometrics, Elsevier, vol. 215(1), pages 239-256.
  • Handle: RePEc:eee:econom:v:215:y:2020:i:1:p:239-256
    DOI: 10.1016/j.jeconom.2019.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407619301848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    2. Han Hong & Elie Tamer, 2003. "Inference in Censored Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 71(3), pages 905-932, May.
    3. Blundell, Richard & Powell, James L., 2007. "Censored regression quantiles with endogenous regressors," Journal of Econometrics, Elsevier, vol. 141(1), pages 65-83, November.
    4. Chen, Songnian, 2018. "Sequential estimation of censored quantile regression models," Journal of Econometrics, Elsevier, vol. 207(1), pages 30-52.
    5. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    6. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    7. Khan, Shakeeb & Tamer, Elie, 2009. "Inference on endogenously censored regression models using conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 152(2), pages 104-119, October.
    8. Honore, Bo E. & Hu, Luojia, 2004. "Estimation of cross sectional and panel data censored regression models with endogeneity," Journal of Econometrics, Elsevier, vol. 122(2), pages 293-316, October.
    9. Chen, Songnian, 2012. "Distribution-Free Estimation Of The Box–Cox Regression Model With Censoring," Econometric Theory, Cambridge University Press, vol. 28(3), pages 680-695, June.
    10. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    11. Sherman, Robert P., 1994. "U-Processes in the Analysis of a Generalized Semiparametric Regression Estimator," Econometric Theory, Cambridge University Press, vol. 10(2), pages 372-395, June.
    12. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    13. Honore, Bo E. & Powell, James L., 1994. "Pairwise difference estimators of censored and truncated regression models," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 241-278.
    14. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    15. Kenneth Y. Chay & James L. Powell, 2001. "Semiparametric Censored Regression Models," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 29-42, Fall.
    16. Hong H. & Chernozhukov V., 2002. "Three-Step Censored Quantile Regression and Extramarital Affairs," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 872-882, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    2. Chen, Songnian & Wang, Qian, 2023. "Quantile regression with censoring and sample selection," Journal of Econometrics, Elsevier, vol. 234(1), pages 205-226.
    3. Guo, Jing & Wang, Lei & Zhang, Zhengyu, 2022. "Identification and estimation of a heteroskedastic censored regression model with random coefficient dummy endogenous regressors," Economic Modelling, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Songnian, 2018. "Sequential estimation of censored quantile regression models," Journal of Econometrics, Elsevier, vol. 207(1), pages 30-52.
    2. Chen, Songnian & Wang, Qian, 2023. "Quantile regression with censoring and sample selection," Journal of Econometrics, Elsevier, vol. 234(1), pages 205-226.
    3. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    4. Su, Liangjun & Hoshino, Tadao, 2016. "Sieve instrumental variable quantile regression estimation of functional coefficient models," Journal of Econometrics, Elsevier, vol. 191(1), pages 231-254.
    5. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    6. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    7. Khan, Shakeeb & Tamer, Elie, 2009. "Inference on endogenously censored regression models using conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 152(2), pages 104-119, October.
    8. German Blanco & Xuan Chen & Carlos A. Flores & Alfonso Flores-Lagunes, 2020. "Bounds on Average and Quantile Treatment Effects on Duration Outcomes Under Censoring, Selection, and Noncompliance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 901-920, October.
    9. Guo, Jing & Wang, Lei & Zhang, Zhengyu, 2022. "Identification and estimation of a heteroskedastic censored regression model with random coefficient dummy endogenous regressors," Economic Modelling, Elsevier, vol. 110(C).
    10. Bertanha, Marinho & McCallum, Andrew H. & Seegert, Nathan, 2023. "Better bunching, nicer notching," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Chen, Songnian, 2019. "Quantile regression for duration models with time-varying regressors," Journal of Econometrics, Elsevier, vol. 209(1), pages 1-17.
    12. Tae-Hwan Kim & Christophe Muller, 2017. "A Robust Test of Exogeneity Based on Quantile Regressions," Working Papers halshs-01508067, HAL.
    13. Jayeeta Bhattacharya, 2020. "Quantile regression with generated dependent variable and covariates," Papers 2012.13614, arXiv.org.
    14. Blundell, Richard & Powell, James L., 2007. "Censored regression quantiles with endogenous regressors," Journal of Econometrics, Elsevier, vol. 141(1), pages 65-83, November.
    15. Lin, Guixian & He, Xuming & Portnoy, Stephen, 2012. "Quantile regression with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 797-812.
    16. Tae-Hwan Kim & Christophe Muller, 2013. "A Test for Endogeneity in Conditional Quantiles," Working Papers halshs-00854527, HAL.
    17. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    18. Tae-Hwan Kim & Christophe Muller, 2012. "A test for endogeneity in conditional quantile models," Working papers 2012rwp-49, Yonsei University, Yonsei Economics Research Institute.
    19. Tae-Hwan Kim & Christophe Muller, 2020. "Inconsistency transmission and variance reduction in two-stage quantile regression," Post-Print hal-02084505, HAL.
    20. Chen, Songnian, 2023. "Two-step estimation of censored quantile regression for duration models with time-varying regressors," Journal of Econometrics, Elsevier, vol. 235(2), pages 1310-1336.

    More about this item

    Keywords

    Censored regression; Endogeneity; Semiparametric estimation;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:215:y:2020:i:1:p:239-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.