IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v71y2003i3p905-932.html

Inference in Censored Models with Endogenous Regressors

Author

Listed:
  • Han Hong

  • Elie Tamer

Abstract

This paper analyzes the linear regression model y = x&bgr;+ε with a conditional median assumption med (ε| z) = 0, where z is a vector of exogenous instrument random variables. We study inference on the parameter &bgr; when y is censored and x is endogenous. We treat the censored model as a model with interval observation on an outcome, thus obtaining an incomplete model with inequality restrictions on conditional median regressions. We analyze the identified features of the model and provide sufficient conditions for point identification of the parameter &bgr;. We use a minimum distance estimator to consistently estimate the identified features of the model. We show that under point identification conditions and additional regularity conditions, the estimator based on inequality restrictions is normal and we derive its asymptotic variance. One can use our setup to treat the identification and estimation of endogenous linear median regression models with no censoring. A Monte Carlo analysis illustrates our estimator in the censored and the uncensored case. Copyright Econometric Society, 2002.

Suggested Citation

  • Han Hong & Elie Tamer, 2003. "Inference in Censored Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 71(3), pages 905-932, May.
  • Handle: RePEc:ecm:emetrp:v:71:y:2003:i:3:p:905-932
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:71:y:2003:i:3:p:905-932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.