IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Inference in Censored Models with Endogenous Regressors

  • Han Hong

    ()

  • Elie Tamer

This paper analyzes the linear regression model y = x&bgr;+ε with a conditional median assumption med (ε| z) = 0, where z is a vector of exogenous instrument random variables. We study inference on the parameter &bgr; when y is censored and x is endogenous. We treat the censored model as a model with interval observation on an outcome, thus obtaining an incomplete model with inequality restrictions on conditional median regressions. We analyze the identified features of the model and provide sufficient conditions for point identification of the parameter &bgr;. We use a minimum distance estimator to consistently estimate the identified features of the model. We show that under point identification conditions and additional regularity conditions, the estimator based on inequality restrictions is normal and we derive its asymptotic variance. One can use our setup to treat the identification and estimation of endogenous linear median regression models with no censoring. A Monte Carlo analysis illustrates our estimator in the censored and the uncensored case. Copyright Econometric Society, 2002.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.blackwellpublishing.com/ecta/asp/abstract.asp?iid=3&aid=430&vid=71
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Econometric Society in its journal Econometrica.

Volume (Year): 71 (2003)
Issue (Month): 3 (05)
Pages: 905-932

as
in new window

Handle: RePEc:ecm:emetrp:v:71:y:2003:i:3:p:905-932
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page: http://www.econometricsociety.org/
Email:


More information through EDIRC

Order Information: Web: https://www.econometricsociety.org/publications/econometrica/access/ordering-back-issues Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Powell, James L, 1986. "Symmetrically Trimmed Least Squares Estimation for Tobit Models," Econometrica, Econometric Society, vol. 54(6), pages 1435-60, November.
  2. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
  3. Honore, Bo E, 1992. "Trimmed LAD and Least Squares Estimation of Truncated and Censored Regression Models with Fixed Effects," Econometrica, Econometric Society, vol. 60(3), pages 533-65, May.
  4. repec:ner:tilbur:urn:nbn:nl:ui:12-80344 is not listed on IDEAS
  5. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
  6. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-59, July.
  7. James Tobin, 1956. "Estimation of Relationships for Limited Dependent Variables," Cowles Foundation Discussion Papers 3R, Cowles Foundation for Research in Economics, Yale University.
  8. Blundell, Richard W & Smith, Richard J, 1989. "Estimation in a Class of Simultaneous Equation Limited Dependent Variable Models," Review of Economic Studies, Wiley Blackwell, vol. 56(1), pages 37-57, January.
  9. Vella, F. & Verbeek, M.J.C.M., 1999. "Two-step estimation of panel data models with censored endogenous variables and selection bias," Other publications TiSEM 5aad87bc-25d1-49bc-882b-c, Tilburg University, School of Economics and Management.
  10. Arabmazar, Abbas & Schmidt, Peter, 1982. "An Investigation of the Robustness of the Tobit Estimator to Non-Normality," Econometrica, Econometric Society, vol. 50(4), pages 1055-63, July.
  11. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-30, November.
  12. Vella, Francis & Verbeek, Marno, 1999. "Two-step estimation of panel data models with censored endogenous variables and selection bias," Journal of Econometrics, Elsevier, vol. 90(2), pages 239-263, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:71:y:2003:i:3:p:905-932. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.