IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v75y2023i5d10.1007_s10463-022-00862-2.html
   My bibliography  Save this article

Robust density power divergence estimates for panel data models

Author

Listed:
  • Abhijit Mandal

    (University of Texas at El Paso)

  • Beste Hamiye Beyaztas

    (Istanbul Medeniyet University)

  • Soutir Bandyopadhyay

    (Colorado School of Mines)

Abstract

The panel data regression models have become one of the most widely applied statistical approaches in different fields of research, including social, behavioral, environmental sciences, and econometrics. However, traditional least-squares-based techniques frequently used for panel data models are vulnerable to the adverse effects of data contamination or outlying observations that may result in biased and inefficient estimates and misleading statistical inference. In this study, we propose a minimum density power divergence estimation procedure for panel data regression models with random effects to achieve robustness against outliers. The robustness, as well as the asymptotic properties of the proposed estimator, are rigorously established. The finite-sample properties of the proposed method are investigated through an extensive simulation study and an application to climate data in Oman. Our results demonstrate that the proposed estimator exhibits improved performance over some traditional and robust methods in the presence of data contamination.

Suggested Citation

  • Abhijit Mandal & Beste Hamiye Beyaztas & Soutir Bandyopadhyay, 2023. "Robust density power divergence estimates for panel data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 773-798, October.
  • Handle: RePEc:spr:aistmt:v:75:y:2023:i:5:d:10.1007_s10463-022-00862-2
    DOI: 10.1007/s10463-022-00862-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-022-00862-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-022-00862-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng Hsiao, 2007. "Panel data analysis—advantages and challenges," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-22, May.
    2. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    3. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    4. Maciak, Matúš, 2021. "Quantile LASSO with changepoints in panel data models applied to option pricing," Econometrics and Statistics, Elsevier, vol. 20(C), pages 166-175.
    5. Aquaro, M. & Čížek, P., 2013. "One-step robust estimation of fixed-effects panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 536-548.
    6. D. R. Cox, 2002. "Estimation in a simple random effects model with nonnormal distributions," Biometrika, Biometrika Trust, vol. 89(4), pages 831-840, December.
    7. Maria Caterina Bramati & Christophe Croux, 2007. "Robust estimators for the fixed effects panel data model," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 521-540, November.
    8. Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
    9. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
    10. A. Basu & A. Mandal & N. Martin & L. Pardo, 2013. "Testing statistical hypotheses based on the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 319-348, April.
    11. Fujisawa, Hironori & Eguchi, Shinto, 2008. "Robust parameter estimation with a small bias against heavy contamination," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2053-2081, October.
    12. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    13. Wallace, T D & Hussain, Ashiq, 1969. "The Use of Error Components Models in Combining Cross Section with Time Series Data," Econometrica, Econometric Society, vol. 37(1), pages 55-72, January.
    14. ., 2017. "Econometric analysis: loopholes and shortcomings," Chapters, in: Econometrics as a Con Art, chapter 5, pages 88-105, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
    3. Verardi Vincenzo & Wagner Joachim, 2011. "Robust Estimation of Linear Fixed Effects Panel Data Models with an Application to the Exporter Productivity Premium," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(4), pages 546-557, August.
    4. P. Čížek & M. Aquaro, 2018. "Robust estimation and moment selection in dynamic fixed-effects panel data models," Computational Statistics, Springer, vol. 33(2), pages 675-708, June.
    5. Ayanendranath Basu & Abhik Ghosh & Maria Jaenada & Leandro Pardo, 2024. "Robust adaptive LASSO in high-dimensional logistic regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(5), pages 1217-1249, November.
    6. Rodolphe Desbordes & Vincenzo Verardi, 2017. "Foreign Direct Investment and Democracy: A Robust Fixed Effects Approach to a Complex Relationship," Pacific Economic Review, Wiley Blackwell, vol. 22(1), pages 43-82, February.
    7. Annalivia Polselli, 2023. "Influence Analysis with Panel Data," Papers 2312.05700, arXiv.org.
    8. Dhaene, Geert & Zhu, Yu, 2017. "Median-based estimation of dynamic panel models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 398-423.
    9. Alexandre Belloni & Mingli Chen & Oscar Hernan Madrid Padilla & Zixuan & Wang, 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," Papers 1912.02151, arXiv.org, revised Aug 2022.
    10. Jan Ámos Víšek, 2015. "Estimating the Model with Fixed and Random Effects by a Robust Method," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 999-1014, December.
    11. A. Basu & A. Mandal & N. Martin & L. Pardo, 2015. "Robust tests for the equality of two normal means based on the density power divergence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 611-634, July.
    12. Avijit Maji & Abhik Ghosh & Ayanendranath Basu & Leandro Pardo, 2019. "Robust statistical inference based on the C-divergence family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1289-1322, October.
    13. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    14. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    15. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    16. Andrea Vaona & Mario Pianta, 2008. "Firm Size and Innovation in European Manufacturing," Small Business Economics, Springer, vol. 30(3), pages 283-299, March.
    17. Baron, Opher & Callen, Jeffrey L. & Segal, Dan, 2023. "Does the bullwhip matter economically? A cross-sectional firm-level analysis," International Journal of Production Economics, Elsevier, vol. 259(C).
    18. Silvio R. Rendon, 2013. "Fixed and Random Effects in Classical and Bayesian Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(3), pages 460-476, June.
    19. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    20. Ding Luo & Oded Cats & Hans Lint, 2020. "Can passenger flow distribution be estimated solely based on network properties in public transport systems?," Transportation, Springer, vol. 47(6), pages 2757-2776, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:75:y:2023:i:5:d:10.1007_s10463-022-00862-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.