IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v78y2015i5p611-634.html
   My bibliography  Save this article

Robust tests for the equality of two normal means based on the density power divergence

Author

Listed:
  • A. Basu
  • A. Mandal
  • N. Martin
  • L. Pardo

Abstract

Statistical techniques are used in all branches of science to determine the feasibility of quantitative hypotheses. One of the most basic applications of statistical techniques in comparative analysis is the test of equality of two population means, generally performed under the assumption of normality. In medical studies, for example, we often need to compare the effects of two different drugs, treatments or preconditions on the resulting outcome. The most commonly used test in this connection is the two sample $$t$$ t test for the equality of means, performed under the assumption of equality of variances. It is a very useful tool, which is widely used by practitioners of all disciplines and has many optimality properties under the model. However, the test has one major drawback; it is highly sensitive to deviations from the ideal conditions, and may perform miserably under model misspecification and the presence of outliers. In this paper we present a robust test for the two sample hypothesis based on the density power divergence measure (Basu et al. in Biometrika 85(3):549–559, 1998 ), and show that it can be a great alternative to the ordinary two sample $$t$$ t test. The asymptotic properties of the proposed tests are rigorously established in the paper, and their performances are explored through simulations and real data analysis. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • A. Basu & A. Mandal & N. Martin & L. Pardo, 2015. "Robust tests for the equality of two normal means based on the density power divergence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 611-634, July.
  • Handle: RePEc:spr:metrik:v:78:y:2015:i:5:p:611-634
    DOI: 10.1007/s00184-014-0518-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-014-0518-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-014-0518-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Basu & A. Mandal & N. Martin & L. Pardo, 2013. "Testing statistical hypotheses based on the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 319-348, April.
    2. Fujisawa, Hironori & Eguchi, Shinto, 2008. "Robust parameter estimation with a small bias against heavy contamination," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2053-2081, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Balakrishnan & N. Martín & L. Pardo, 2017. "Empirical phi-divergence test statistics for the difference of means of two populations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(2), pages 199-226, April.
    2. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhijit Mandal & Beste Hamiye Beyaztas & Soutir Bandyopadhyay, 2023. "Robust density power divergence estimates for panel data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 773-798, October.
    2. Avijit Maji & Abhik Ghosh & Ayanendranath Basu & Leandro Pardo, 2019. "Robust statistical inference based on the C-divergence family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1289-1322, October.
    3. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    4. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. Jingjing Wu & Rohana J. Karunamuni, 2018. "Efficient and robust tests for semiparametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 761-788, August.
    6. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    7. Liu, Yan, 2017. "Robust parameter estimation for stationary processes by an exotic disparity from prediction problem," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 120-130.
    8. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    9. Paola Stolfi & Mauro Bernardi & Davide Vergni, 2022. "Robust estimation of time-dependent precision matrix with application to the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    10. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    11. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
    12. Hirose, Kei & Fujisawa, Hironori & Sese, Jun, 2017. "Robust sparse Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 172-190.
    13. Ting-Li Chen, 2015. "On the convergence and consistency of the blurring mean-shift process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 157-176, February.
    14. Hung Hung & Zhi†Yu Jou & Su†Yun Huang, 2018. "Robust mislabel logistic regression without modeling mislabel probabilities," Biometrics, The International Biometric Society, vol. 74(1), pages 145-154, March.
    15. Byungsoo Kim & Junmo Song & Changryong Baek, 2021. "Robust test for structural instability in dynamic factor models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 821-853, August.
    16. Shogo Kato & Shinto Eguchi, 2016. "Robust estimation of location and concentration parameters for the von Mises–Fisher distribution," Statistical Papers, Springer, vol. 57(1), pages 205-234, March.
    17. Takayuki Kawashima & Hironori Fujisawa, 2023. "Robust regression against heavy heterogeneous contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(4), pages 421-442, May.
    18. Ghosh, Abhik & Basu, Ayanendranath, 2016. "Testing composite null hypotheses based on S-divergences," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 38-47.
    19. Nirian Martín & Leandro Pardo, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 279-282, June.
    20. Masashi Sugiyama & Taiji Suzuki & Takafumi Kanamori, 2012. "Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1009-1044, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:78:y:2015:i:5:p:611-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.