IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws042007.html
   My bibliography  Save this paper

Spurious and hidden volatility

Author

Abstract

This paper analyses the effects caused by outliers on the identification and estimation of GARCH models. We show that outliers can lead to detect spurious conditional heteroscedasticity and can also hide genuine ARCH effects. First, we derive the asymptotic biases caused by outliers on the sample autocorrelations of squared observations and their effects on some homoscedasticity tests. Then, we obtain the asymptotic biases of the OLS estimates of ARCH(p) models and analyze their finite sample behavior by means of extensive Monte Carlo experiments. The finite sample results are extended to GLS and ML estimates of ARCH(p) and GARCH(1,1) models.

Suggested Citation

  • Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws042007
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/6c14cbe1-7a69-4ff3-bc6d-9a180d4e14bd/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    2. Aggarwal, Reena & Inclan, Carla & Leal, Ricardo, 1999. "Volatility in Emerging Stock Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(1), pages 33-55, March.
    3. Pena D. & Rodriguez J., 2002. "A Powerful Portmanteau Test of Lack of Fit for Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 601-610, June.
    4. Lee, John H H & King, Maxwell L, 1993. "A Locally Most Mean Powerful Based Score Test for ARCH and GARCH Regression Disturbances," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 17-27, January.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Benjamin M. Friedman & David I. Laibson, 1989. "Economic Implications of Extraordinary Movements in Stock Prices," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 20(2), pages 137-190.
    7. Balke, Nathan S & Fomby, Thomas B, 1994. "Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 181-200, April-Jun.
    8. Allan W. Gregory & Jonathan J. Reeves, 2010. "Estimation and Inference in ARCH Models in the Presence of Outliers," Journal of Financial Econometrics, Oxford University Press, vol. 8(4), pages 547-549, Fall.
    9. Philip Hans Franses & Dick van Dijk & Andre Lucas, 2004. "Short patches of outliers, ARCH and volatility modelling," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 221-231.
    10. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    11. van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for ARCH in the Presence of Additive Outliers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 539-562, Sept.-Oct.
    12. Arup Bose & Kanchan Mukherjee, 2003. "Estimating The Arch Parameters By Solving Linear Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 127-136, March.
    13. Xibin Zhang, 2004. "Assessment of Local Influence in GARCH Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 301-313, March.
    14. Nora Muler & Victor J. Yohai, 2002. "Robust estimates for arch processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(3), pages 341-375, May.
    15. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    16. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    17. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beum-Jo Park, 2009. "Risk-return relationship in equity markets: using a robust GMM estimator for GARCH-M models," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 93-104.
    2. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grossi, Luigi & Laurini, Fabrizio, 2009. "A robust forward weighted Lagrange multiplier test for conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2251-2263, April.
    2. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    4. E. Ruiz & M.A. Carnero & D. Pereira, 2004. "Effects of Level Outliers on the Identification and Estimation of GARCH Models," Econometric Society 2004 Australasian Meetings 21, Econometric Society.
    5. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    6. Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The role of outliers and oil price shocks on volatility of metal prices," Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
    7. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. F. Javier Trivez & Beatriz Catalan, 2009. "Detecting level shifts in ARMA-GARCH (1,1) Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(6), pages 679-697.
    9. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    10. Duchesne, Pierre, 2004. "On robust testing for conditional heteroscedasticity in time series models," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 227-256, June.
    11. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
    13. Beatriz Catalan & F. Javier Trivez, 2007. "Forecasting volatility in GARCH models with additive outliers," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 591-596.
    14. Charles, Amelie & Darne, Olivier, 2006. "Large shocks and the September 11th terrorist attacks on international stock markets," Economic Modelling, Elsevier, vol. 23(4), pages 683-698, July.
    15. Yaqoob, Tanzeela & Maqsood, Arfa, 2024. "The potency of time series outliers in volatile models: An empirical analysis of fintech, and mineral resources," Resources Policy, Elsevier, vol. 89(C).
    16. L. Grossi & G. Morelli, 2006. "Robust volatility forecasts and model selection in financial time series," Economics Department Working Papers 2006-SE02, Department of Economics, Parma University (Italy).
    17. Amélie Charles, 2008. "Forecasting volatility with outliers in GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 551-565.
    18. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    19. Jinliang Li & Chihwa Kao & Wei David Zhang, 2010. "Bounded influence estimator for GARCH models: evidence from foreign exchange rates," Applied Economics, Taylor & Francis Journals, vol. 42(11), pages 1437-1445.
    20. WenShwo Fang & Stephen M. Miller, 2014. "Output Growth and its Volatility: The Gold Standard through the Great Moderation," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws042007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.