IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v21y2002i5p317-54.html
   My bibliography  Save this article

Forecasting and Trading Currency Volatility: An Application of Recurrent Neural Regression and Model Combination

Author

Listed:
  • Dunis, Christian L
  • Huang, Xuehuan

Abstract

No abstract is available for this item.

Suggested Citation

  • Dunis, Christian L & Huang, Xuehuan, 2002. "Forecasting and Trading Currency Volatility: An Application of Recurrent Neural Regression and Model Combination," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(5), pages 317-354, August.
  • Handle: RePEc:jof:jforec:v:21:y:2002:i:5:p:317-54
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:gam:jrisks:v:6:y:2018:i:3:p:84-:d:164655 is not listed on IDEAS
    2. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    3. Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.
    4. Shiyi Chen & Wolfgang K. Härdle & Kiho Jeong, 2010. "Forecasting volatility with support vector machine-based GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 406-433.
    5. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
    6. Kellard, Neil & Sarantis, Nicholas, 2008. "Can exchange rate volatility explain persistence in the forward premium?," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 714-728, September.
    7. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    8. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    9. Christian Dunis & Jason Laws & Georgios Sermpinis, 2010. "Higher order and recurrent neural architectures for trading the EUR/USD exchange rate," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 615-629.
    10. Shiyi Chen & Kiho Jeong & Wolfgang Härdle, 2008. "Support Vector Regression Based GARCH Model with Application to Forecasting Volatility of Financial Returns," SFB 649 Discussion Papers SFB649DP2008-014, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    11. Kellard, Neil & Dunis, Christian & Sarantis, Nicholas, 2010. "Foreign exchange, fractional cointegration and the implied-realized volatility relation," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 882-891, April.
    12. Mohamed Saidane & Christian Lavergne, 2009. "Optimal Prediction with Conditionally Heteroskedastic Factor Analysed Hidden Markov Models," Computational Economics, Springer;Society for Computational Economics, vol. 34(4), pages 323-364, November.
    13. G'abor Petneh'azi & J'ozsef G'all, 2018. "Exploring the predictability of range-based volatility estimators using RNNs," Papers 1803.07152, arXiv.org.
    14. Kellard, Neil M. & Jiang, Ying & Wohar, Mark, 2015. "Spurious long memory, uncommon breaks and the implied–realized volatility puzzle," Journal of International Money and Finance, Elsevier, vol. 56(C), pages 36-54.
    15. Daniela Spiesová, 2014. "The Prediction of Exchange Rates with the Use of Auto-Regressive Integrated Moving-Average Models," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 10(5), pages 28-38, October.
    16. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:21:y:2002:i:5:p:317-54. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.