IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Forecasting volatility with support vector machine-based GARCH model

  • Shiyi Chen

    (China Center for Economic Studies, School of Economics, Fudan University, Shanghai, China)

  • Wolfgang K. Härdle

    (Center for Applied Statistics and Economics, Humboldt University, Berlin, Germany)

  • Kiho Jeong

    (School of Economics and Trade, Kyungpook National University, Daegu, Republic of Korea)

Recently, support vector machine (SVM), a novel artificial neural network (ANN), has been successfully used for financial forecasting. This paper deals with the application of SVM in volatility forecasting under the GARCH framework, the performance of which is compared with simple moving average, standard GARCH, nonlinear EGARCH and traditional ANN-GARCH models by using two evaluation measures and robust Diebold-Mariano tests. The real data used in this study are daily GBP exchange rates and NYSE composite index. Empirical results from both simulation and real data reveal that, under a recursive forecasting scheme, SVM-GARCH models significantly outperform the competing models in most situations of one-period-ahead volatility forecasting, which confirms the theoretical advantage of SVM. The standard GARCH model also performs well in the case of normality and large sample size, while EGARCH model is good at forecasting volatility under the high skewed distribution. The sensitivity analysis to choose SVM parameters and cross-validation to determine the stopping point of the recurrent SVM procedure are also examined in this study. Copyright © 2009 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1002/for.1134
File Function: Link to full text; subscription required
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 29 (2010)
Issue (Month): 4 ()
Pages: 406-433

as
in new window

Handle: RePEc:jof:jforec:v:29:y:2010:i:4:p:406-433
Contact details of provider: Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000. "On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market," Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
  2. Clements, Michael P. & Smith, Jeremy, 2001. "Evaluating forecasts from SETAR models of exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 133-148, February.
  3. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, . "Multivariate GARCH models: a survey," CORE Discussion Papers RP -1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
  5. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  6. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
  7. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
  8. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  9. Clements, Michael P & Smith, Jeremy, 1996. "A Monte Carlo Study of the Forecasting Performance of Empirical Setar Models," The Warwick Economics Research Paper Series (TWERPS) 464, University of Warwick, Department of Economics.
  10. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  11. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
  12. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
  13. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  14. Becker, Ralf & Clements, Adam E. & White, Scott I., 2007. "Does implied volatility provide any information beyond that captured in model-based volatility forecasts?," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2535-2549, August.
  15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  16. Valentina Corradi & Norman Swanson, 2003. "Some Recent Developments in Predictive Accuracy Testing With Nested Models and (Generic) Nonlinear Alternatives," Departmental Working Papers 200316, Rutgers University, Department of Economics.
  17. Chen, Gongmeng & Choi, Yoon K. & Zhou, Yong, 2008. "Detections of changes in return by a wavelet smoother with conditional heteroscedastic volatility," Journal of Econometrics, Elsevier, vol. 143(2), pages 227-262, April.
  18. Bekiros, S. & Georgoutsos, D., 2006. "Direction-of-Change Forecasting using a Volatility- Based Recurrent Neural Network," CeNDEF Working Papers 06-16, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  19. Dimson, Elroy & Marsh, Paul, 1990. "Volatility forecasting without data-snooping," Journal of Banking & Finance, Elsevier, vol. 14(2-3), pages 399-421, August.
  20. Ané, Thierry & Ureche-Rangau, Loredana & Gambet, Jean-Benoît & Bouverot, Julien, 2008. "Robust outlier detection for Asia-Pacific stock index returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(4), pages 326-343, October.
  21. Chan, K C & Christie, William G & Schultz, Paul H, 1995. "Market Structure and the Intraday Pattern of Bid-Ask Spreads for NASDAQ Securities," The Journal of Business, University of Chicago Press, vol. 68(1), pages 35-60, January.
  22. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  23. Andersson, Jonas, 2001. "On the Normal Inverse Gaussian Stochastic Volatility Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 44-54, January.
  24. Feng, Yuanhua & McNeil, Alexander J., 2008. "Modelling of scale change, periodicity and conditional heteroskedasticity in return volatility," Economic Modelling, Elsevier, vol. 25(5), pages 850-867, September.
  25. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
  26. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
  27. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
  28. Dunis, Christian L & Huang, Xuehuan, 2002. "Forecasting and Trading Currency Volatility: An Application of Recurrent Neural Regression and Model Combination," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(5), pages 317-54, August.
  29. Ferland, Rene & Lalancette, Simon, 2006. "Dynamics of realized volatilities and correlations: An empirical study," Journal of Banking & Finance, Elsevier, vol. 30(7), pages 2109-2130, July.
  30. Balaban, Ercan, 2004. "Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate," Economics Letters, Elsevier, vol. 83(1), pages 99-105, April.
  31. Becker, Ralf & Clements, Adam E. & McClelland, Andrew, 2009. "The jump component of S&P 500 volatility and the VIX index," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1033-1038, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:29:y:2010:i:4:p:406-433. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.