IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v19y2001i1p44-54.html
   My bibliography  Save this article

On the Normal Inverse Gaussian Stochastic Volatility Model

Author

Listed:
  • Andersson, Jonas

Abstract

In this article, the normal inverse Gaussian stochastic volatility model of Barndorf-Nielsen is extended. The resulting model has a more flexible lag structure than the original one. In addition, the second- and fourth-order moments, important properties of a volatility model, are derived. The model can be considered either as a generalized autoregressive conditional heteroscedasticity model with nonnormal errors or as a stochastic volatility model with an inverse Gaussian distributed conditional variance. A simulation study is made to investigate the performance of the maximum likelihood estimator of the model. Finally, the model is applied to stock returns and exchange-rate movements. Its fit to two stylized facts and its forecasting performance is compared with two other volatility models.

Suggested Citation

  • Andersson, Jonas, 2001. "On the Normal Inverse Gaussian Stochastic Volatility Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 44-54, January.
  • Handle: RePEc:bes:jnlbes:v:19:y:2001:i:1:p:44-54
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:19:y:2001:i:1:p:44-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.