IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Direction-of-change forecasting using a volatility-based recurrent neural network

  • S. D. Bekiros

    (CeNDEF, Department of Quantitative Economics, University of Amsterdam, Amsterdam, The Netherlands)

  • D. A. Georgoutsos

    (Department of Accounting and Finance, Athens University of Economics and Business, Athens, Greece)

This paper investigates the profitability of a trading strategy, based on recurrent neural networks, that attempts to predict the direction-of-change of the market in the case of the NASDAQ composite index. The sample extends over the period 8 February 1971 to 7 April 1998, while the sub-period 8 April 1998 to 5 February 2002 has been reserved for out-of-sample testing purposes. We demonstrate that the incorporation in the trading rule of estimates of the conditional volatility changes strongly enhances its profitability, after the inclusion of transaction costs, during bear market periods. This improvement is being measured with respect to a nested model that does not include the volatility variable as well as to a buy-and-hold strategy. We suggest that our findings can be justified by invoking either the 'volatility feedback' theory or the existence of portfolio insurance schemes in the equity markets. Our results are also consistent with the view that volatility dependence produces sign dependence. Copyright © 2008 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1002/for.1063
File Function: Link to full text; subscription required
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 27 (2008)
Issue (Month): 5 ()
Pages: 407-417

as
in new window

Handle: RePEc:jof:jforec:v:27:y:2008:i:5:p:407-417
Contact details of provider: Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-28, September.
  2. Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000. "On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market," Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
  3. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  4. Peter F. Christoffersen & Francis X.Diebold, 2003. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," PIER Working Paper Archive 04-009, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  5. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-33, October.
  6. G. William Schwert, 2001. "Stock Volatility in the New Millennium: How Wacky Is Nasdaq?," NBER Working Papers 8436, National Bureau of Economic Research, Inc.
  7. Gencay, Ramazan, 1998. "The predictability of security returns with simple technical trading rules," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 347-359, October.
  8. Abhyankar, A & Copeland, L S & Wong, W, 1997. "Uncovering Nonlinear Structure in Real-Time Stock-Market Indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 1-14, January.
  9. Paul R. Krugman, 1987. "Trigger Strategies and Price Dynamics in Equity and Foreign Exchange Markets," NBER Working Papers 2459, National Bureau of Economic Research, Inc.
  10. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:27:y:2008:i:5:p:407-417. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.