IDEAS home Printed from https://ideas.repec.org/a/eee/revfin/v22y2013i4p213-219.html
   My bibliography  Save this article

Irrational fads, short-term memory emulation, and asset predictability

Author

Listed:
  • Bekiros, Stelios D.

Abstract

Opponents of the efficient markets hypothesis argue that predictability reflects the psychological factors and “fads” of irrational investors in a speculative market. In that, conventional time series analysis often fails to give an accurate forecast for financial processes due to inherent noise patterns, fat tails, and nonlinear components. A recent stream of literature on behavioral finance has revealed that boundedly rational agents using simple rules of thumb for their decisions under uncertainty provides a more realistic description of human behavior than perfect rationality with optimal decision rules. Consequently, the application of technical analysis in trading could produce high returns. Machine learning techniques have been employed in economic systems in modeling nonlinearities and simulating human behavior. In this study, we expand the literature that evaluates return sign forecasting ability by introducing a recurrent neural network approach that combines heuristic learning and short-term memory emulation, thus mimicking the decision-making process of boundedly rational agents. We investigate the relative direction-of-change predictability of the neural network structure implied by the Lee–White–Granger test as well as compare it to other well-established models for the DJIA index. Moreover, we examine the relationship between stock return volatility and returns. Overall, the proposed model presents high profitability, in particular during “bear” market periods.

Suggested Citation

  • Bekiros, Stelios D., 2013. "Irrational fads, short-term memory emulation, and asset predictability," Review of Financial Economics, Elsevier, vol. 22(4), pages 213-219.
  • Handle: RePEc:eee:revfin:v:22:y:2013:i:4:p:213-219 DOI: 10.1016/j.rfe.2013.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1058330013000402
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levich, Richard M. & Thomas, Lee III, 1993. "The significance of technical trading-rule profits in the foreign exchange market: a bootstrap approach," Journal of International Money and Finance, Elsevier, vol. 12(5), pages 451-474, October.
    2. Fernando Fernández-Rodríguez & Christian González-Martel* & Simón Sosvilla-Rivero, "undated". "On the profitability of technical trading rules based on arifitial neural networks : evidence from the Madrid stock market," Working Papers 99-07, FEDEA.
    3. Chen, Son-Nan, 1982. "An Examination of Risk-Return Relationship in Bull and Bear Markets Using Time-Varying Betas," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(02), pages 265-286, June.
    4. Lunde A. & Timmermann A., 2004. "Duration Dependence in Stock Prices: An Analysis of Bull and Bear Markets," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 253-273, July.
    5. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    6. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1770, August.
    7. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    8. repec:hrv:faseco:33077905 is not listed on IDEAS
    9. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, pages 1273-1287.
    10. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, pages 561-565.
    11. Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000. "On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market," Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
    12. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    13. Paul R. Krugman, 1987. "Trigger Strategies and Price Dynamics in Equity and Foreign Exchange Markets," NBER Working Papers 2459, National Bureau of Economic Research, Inc.
    14. Cheol-Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    15. repec:hrv:faseco:30725119 is not listed on IDEAS
    16. La Porta, Rafael, et al, 1997. " Good News for Value Stocks: Further Evidence on Market Efficiency," Journal of Finance, American Finance Association, vol. 52(2), pages 859-874, June.
    17. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    18. Shleifer, Andrei & Summers, Lawrence H, 1990. "The Noise Trader Approach to Finance," Journal of Economic Perspectives, American Economic Association, pages 19-33.
    19. Fabozzi, Frank J & Francis, Jack Clark, 1977. "Stability Tests for Alphas and Betas over Bull and Bear Market Conditions," Journal of Finance, American Finance Association, vol. 32(4), pages 1093-1099, September.
    20. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, pages 1-42.
    21. Gencay, Ramazan, 1998. "Optimization of technical trading strategies and the profitability in security markets," Economics Letters, Elsevier, vol. 59(2), pages 249-254, May.
    22. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, pages 83-104.
    23. Teo Jasic & Douglas Wood, 2004. "The profitability of daily stock market indices trades based on neural network predictions: case study for the S&P 500, the DAX, the TOPIX and the FTSE in the period 1965-1999," Applied Financial Economics, Taylor & Francis Journals, pages 285-297.
    24. Black, Fischer, 1986. " Noise," Journal of Finance, American Finance Association, vol. 41(3), pages 529-543, July.
    25. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, pages 1-42.
    26. G. Wenchi Kao & Christopher K. Ma, 1992. "Memories, heteroscedasticity, and price limit in Currency futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 12(6), pages 679-692, December.
    27. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, pages 83-104.
    28. Cars H. Hommes, 2005. "Heterogeneous Agent Models in Economics and Finance," Tinbergen Institute Discussion Papers 05-056/1, Tinbergen Institute.
    29. Po-Hsuan Hsu & Chung-Ming Kuan, 2005. "Reexamining the Profitability of Technical Analysis with Data Snooping Checks," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 606-628.
    30. Fama, Eugene F & French, Kenneth R, 1995. " Size and Book-to-Market Factors in Earnings and Returns," Journal of Finance, American Finance Association, vol. 50(1), pages 131-155, March.
    31. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics,in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186 Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aboura, Sofiane & Chevallier, Julien, 2014. "Cross-market spillovers with ‘volatility surprise’," Review of Financial Economics, Elsevier, pages 194-207.
    2. Noureddine Benlagha, 2014. "Volatility Linkage of Nominal and Index-linked Bond Returns: A Multivariate BEKK-GARCH Approach," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 49-60, November.
    3. repec:ipg:wpaper:2014-469 is not listed on IDEAS

    More about this item

    Keywords

    Machine learning; Neural networks; Volatility trading; Stock predictability;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:revfin:v:22:y:2013:i:4:p:213-219. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/620170 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.