IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2011i1p135-154.html
   My bibliography  Save this article

Modeling default risk with support vector machines

Author

Listed:
  • Shiyi Chen
  • W. K. Hardle
  • R. A. Moro

Abstract

Predicting default risk is important for firms and banks to operate successfully. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so-called Support Vector Machine (SVM) to predict the default risk of German firms. Our analysis is based on the Creditreform database. In all tests performed in this paper the nonlinear model classified by SVM exceeds the benchmark logit model, based on the same predictors, in terms of the performance metric, AR. The empirical evidence is in favor of the SVM for classification, especially in the linear non-separable case. The sensitivity investigation and a corresponding visualization tool reveal that the classifying ability of SVM appears to be superior over a wide range of SVM parameters. In terms of the empirical results obtained by SVM, the eight most important predictors related to bankruptcy for these German firms belong to the ratios of activity, profitability, liquidity, leverage and the percentage of incremental inventories. Some of the financial ratios selected by the SVM model are new because they have a strong nonlinear dependence on the default risk but a weak linear dependence that therefore cannot be captured by the usual linear models such as the DA and logit models.

Suggested Citation

  • Shiyi Chen & W. K. Hardle & R. A. Moro, 2011. "Modeling default risk with support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 11(1), pages 135-154.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:1:p:135-154
    DOI: 10.1080/14697680903410015
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680903410015
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680903410015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduard Sariev & Guido Germano, 2019. "An innovative feature selection method for support vector machines and its test on the estimation of the credit risk of default," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 404-427, July.
    2. Ozturk, Huseyin & Namli, Ersin & Erdal, Halil Ibrahim, 2016. "Modelling sovereign credit ratings: The accuracy of models in a heterogeneous sample," Economic Modelling, Elsevier, vol. 54(C), pages 469-478.
    3. Slawomir Juszczyk & Rafal Balina, 2013. "Effectiveness of Polish and Foreign Disdcriminant Models," Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management,, ToKnowPress.
    4. J. Lara‐Rubio & A. Blanco‐Oliver & R. Pino‐Mejías, 2017. "Promoting Entrepreneurship at the Base of the Social Pyramid via Pricing Systems: A case Study," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(1), pages 12-28, January.
    5. Wolgang Karl Härdle & Li-Shan Huang, 2013. "Analysis of Deviance in Generalized Partial Linear Models," SFB 649 Discussion Papers SFB649DP2013-028, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Wolfgang Karl Härdle & Dedy Dwi Prastyo, 2013. "Default Risk Calculation based on Predictor Selection for the Southeast Asian Industry," SFB 649 Discussion Papers SFB649DP2013-037, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Eduard Sariev & Guido Germano, 2020. "Bayesian regularized artificial neural networks for the estimation of the probability of default," Quantitative Finance, Taylor & Francis Journals, vol. 20(2), pages 311-328, February.
    8. Ahmed, Shamima & Alshater, Muneer M. & Ammari, Anis El & Hammami, Helmi, 2022. "Artificial intelligence and machine learning in finance: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 61(C).
    9. Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
    10. Antonio Blanco-Oliver & Ana Irimia-Dieguez & María Oliver-Alfonso & Nicholas Wilson, 2015. "Systemic Sovereign Risk and Asset Prices: Evidence from the CDS Market, Stressed European Economies and Nonlinear Causality Tests," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(2), pages 144-166, April.
    11. Zybura, Jan & Zybura, Nora & Ahrens, Jan-Philipp & Woywode, Michael, 2021. "Innovation in the post-succession phase of family firms: Family CEO successors and leadership constellations as resources," Journal of Family Business Strategy, Elsevier, vol. 12(2).
    12. Maciej Zieba & Wolfgang K. Härdle, 2016. "Beta-boosted ensemble for big credit scoring data," SFB 649 Discussion Papers SFB649DP2016-052, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    13. Shiyi Chen & Wolfgang K. Härdle & Kiho Jeong, 2010. "Forecasting volatility with support vector machine-based GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 406-433.
    14. Huseyin Ozturk & Ersin Namli & Halil Ibrahim Erdal, 2016. "Reducing Overreliance on Sovereign Credit Ratings: Which Model Serves Better?," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 59-81, June.
    15. Hector O. Zapata & Supratik Mukhopadhyay, 2022. "A Bibliometric Analysis of Machine Learning Econometrics in Asset Pricing," JRFM, MDPI, vol. 15(11), pages 1-17, November.
    16. Dedy Dwi Prastyo & Wolfgang Karl Härdle, 2014. "Localising Forward Intensities for Multiperiod Corporate Default," SFB 649 Discussion Papers SFB649DP2014-040, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:1:p:135-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.