IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v51y2020ics027553191830761x.html
   My bibliography  Save this article

Forecasting financial time-series using data mining models: A simulation study

Author

Listed:
  • Bou-Hamad, Imad
  • Jamali, Ibrahim

Abstract

In this paper, we examine the static and dynamic predictive ability of artificial neural networks and random forests for financial time series within a simulation context. Our simulation design, in which we generate data from an AR(1)-GARCH(1,1) model, allows for several degrees of persistence in the mean equation to mimic the behavior of short and long-horizon asset returns. While the true data generating process beats the data mining techniques in terms of static forecasting, the novelty in this paper is to demonstrate that the data mining techniques outperform the true model under a dynamic forecasting scheme for moderate to highly persistent time series. We provide an empirical application using one-day and long-horizon returns on two exchange rates. Our empirical findings corroborate our simulation results in that the data mining models exhibit superior predictive ability for highly persistent time series. We discuss the importance of our findings for asset allocation and portfolio management.

Suggested Citation

  • Bou-Hamad, Imad & Jamali, Ibrahim, 2020. "Forecasting financial time-series using data mining models: A simulation study," Research in International Business and Finance, Elsevier, vol. 51(C).
  • Handle: RePEc:eee:riibaf:v:51:y:2020:i:c:s027553191830761x
    DOI: 10.1016/j.ribaf.2019.101072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S027553191830761X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vortelinos, Dimitrios I., 2014. "Optimally sampled realized range-based volatility estimators," Research in International Business and Finance, Elsevier, vol. 30(C), pages 34-50.
    2. Philip Hans Franses & Paul van Homelen, 1998. "On forecasting exchange rates using neural networks," Applied Financial Economics, Taylor & Francis Journals, vol. 8(6), pages 589-596.
    3. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Wanke, Peter & Azad, M.D. Abul Kalam & Barros, C.P., 2016. "Predicting efficiency in Malaysian Islamic banks: A two-stage TOPSIS and neural networks approach," Research in International Business and Finance, Elsevier, vol. 36(C), pages 485-498.
    6. Nikolay Gospodinov & Ibrahim Jamali, 2011. "Risk premiums and predictive ability of BAX futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(6), pages 534-561, June.
    7. Terasvirta, Timo & van Dijk, Dick & Medeiros, Marcelo C., 2005. "Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination," International Journal of Forecasting, Elsevier, vol. 21(4), pages 755-774.
    8. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    11. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    12. Franses Philip Hans & van Griensven Kasper, 1998. "Forecasting Exchange Rates Using Neural Networks for Technical Trading Rules," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-8, January.
    13. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
    14. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    3. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    4. Hartmann, Matthias & Herwartz, Helmut & Ulm, Maren, 2017. "A comparative assessment of alternative ex ante measures of inflation uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 76-89.
    5. Wu, Yih-Jiuan, 1998. "Exchange rate forecasting: an application of radial basis function neural networks," ISU General Staff Papers 1998010108000013540, Iowa State University, Department of Economics.
    6. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    7. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Jan 2021.
    8. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    9. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    10. Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    11. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
    12. Kavussanos, Manolis G. & Dimitrakopoulos, Dimitris N., 2011. "Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 258-268.
    13. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    14. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    15. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen Miller, 2013. "Forecasting Nevada gross gaming revenue and taxable sales using coincident and leading employment indexes," Empirical Economics, Springer, vol. 44(2), pages 387-417, April.
    16. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    17. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
    18. Mahua Barari & Nityananda Sarkar & Srikanta Kundu & Kushal Banik Chowdhury, 2014. "Forecasting House Prices in the United States with Multiple Structural Breaks," International Econometric Review (IER), Econometric Research Association, vol. 6(1), pages 1-23, April.
    19. Vargas, Gregorio A., 2006. "An Asymmetric Block Dynamic Conditional Correlation Multivariate GARCH Model," MPRA Paper 189, University Library of Munich, Germany, revised Aug 2006.
    20. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:51:y:2020:i:c:s027553191830761x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.