IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v8y1998i6p589-596.html
   My bibliography  Save this article

On forecasting exchange rates using neural networks

Author

Listed:
  • Philip Hans Franses
  • Paul van Homelen

Abstract

The paper considers the modelling, description and forecasting of four daily exchange rate returns relative to the Dutch guilder using artificial neural network models (ANNs). Based on simulations it is argued (i) that neglected GARCH does not lead to spuriously successful ANNs and (ii) that if there is some form of nonlinearity other than GARCH, ANNs will exploit this for improved forecasting. For the sample data it is found that ANNs do not yield favourable in-sample fits or forecasting performance. These results are interpreted as indicating that the nonlinearity often found in exchange rates is most likely due to GARCH and therefore ANNs are recommended as a diagnostic for mean nonlinearity.

Suggested Citation

  • Philip Hans Franses & Paul van Homelen, 1998. "On forecasting exchange rates using neural networks," Applied Financial Economics, Taylor & Francis Journals, vol. 8(6), pages 589-596.
  • Handle: RePEc:taf:apfiec:v:8:y:1998:i:6:p:589-596
    DOI: 10.1080/096031098332628
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/096031098332628
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Dietrich, 2005. "Using simple neural networks to analyse firm activity," Working Papers 2005014, The University of Sheffield, Department of Economics, revised Jul 2005.
    2. Ahmad Zubaidi Baharumshah & Liew Khim Sen & Lim Kian Ping, 2003. "Exchange Rates Forecasting Model: An Alternative Estimation Procedure," International Finance 0307005, EconWPA.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415.
    4. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    5. Cem Kadilar & Muammer Simsek & Cagdas Hakan Aladag, 2009. "Forecasting The Exchange Rate Series With Ann: The Case Of Turkey," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 9(1), pages 17-29, May.
    6. Malhotra, Rashmi & Malhotra, D. K., 2003. "Evaluating consumer loans using neural networks," Omega, Elsevier, vol. 31(2), pages 83-96, April.
    7. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:8:y:1998:i:6:p:589-596. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.