IDEAS home Printed from
   My bibliography  Save this article

Some variables are more worthy than others: new diffusion index evidence on the monitoring of key economic indicators


  • Nii Ayi Armah
  • Norman Swanson


Central banks regularly monitor select financial and macroeconomic variables in order to obtain early indication of the impact of monetary policies. This practice is discussed on the Federal Reserve Bank of New York website, for example, where one particular set of macroeconomic 'indicators' is given. In this article, we define a particular set of 'indicators' that is chosen to be representative of the typical sort of variable used in practice by both policy-setters and economic forecasters. As a measure of the 'adequacy' of the 'indicators', we compare their predictive content with that of a group of observable factor proxies selected from amongst 132 macroeconomic and financial time series, using the diffusion index methodology of Stock and Watson (SW, 2002a, b) and the factor proxy methodology of Bai and Ng (2006a, b) and Armah and Swanson (2010). The variables that we predict are output growth and inflation, two representative variables from our set of indicators that are often discussed when assessing the impact of monetary policy. Interestingly, we find that the indicators are all contained within the set the observable variables that proxy our factors. Our findings, thus, support the notion that a judiciously chosen set of macroeconomic indicators can effectively provide the same macroeconomic policy-relevant information as that contained in a large-scale time-series dataset. Of course, the large-scale datasets are still required in order to select the key indicator variables or confirm one's prior choice of key variables. Our findings also suggest that certain yield 'spreads' are also useful indicators. The particular spreads that we find to be useful are the difference between treasury or corporate yields and the federal funds rate. After conditioning on these variables, traditional spreads, such as the yield curve slope and the reverse yield gap are found to contain no additional marginal predictive content. We also find that the macroeconomic indicators (not including spreads) perform best when forecasting inflation in nonvolatile time periods, while inclusion of our spread variables improves predictive accuracy in times of high volatility.

Suggested Citation

  • Nii Ayi Armah & Norman Swanson, 2011. "Some variables are more worthy than others: new diffusion index evidence on the monitoring of key economic indicators," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 43-60.
  • Handle: RePEc:taf:apfiec:v:21:y:2011:i:1-2:p:43-60 DOI: 10.1080/09603107.2011.523188

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Forni, Mario & Reichlin, Lucrezia, 1996. "Dynamic Common Factors in Large Cross-Sections," Empirical Economics, Springer, vol. 21(1), pages 27-42.
    3. Andrea Nobili, 2005. "Forecasting Output Growth And Inflation In The Euro Area: Are Financial Spreads Useful?," Temi di discussione (Economic working papers) 544, Bank of Italy, Economic Research and International Relations Area.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    6. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    7. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    8. Jorion, Philippe & Mishkin, Frederic, 1991. "A multicountry comparison of term-structure forecasts at long horizons," Journal of Financial Economics, Elsevier, vol. 29(1), pages 59-80, March.
    9. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. E. P. Davis & S. G. B. Henry, 1994. "The Use of Financial Spreads As Indicator Variables; Evidence for the U.K. and Germany," IMF Working Papers 94/31, International Monetary Fund.
    12. Davis, E Philip & Henry, S G B & Pesaran, B, 1994. "The Role of Financial Spreads: Empirical Analysis of Spreads and Real Activity," The Manchester School of Economic & Social Studies, University of Manchester, vol. 62(4), pages 374-394, December.
    13. Gerlach, Stefan, 1997. "The Information Content of the Term Structure: Evidence for Germany," Empirical Economics, Springer, vol. 22(2), pages 161-179.
    14. Benjamin M. Friedman & Kenneth Kuttner, 1993. "Why Does the Paper-Bill Spread Predict Real Economic Activity?," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 213-254 National Bureau of Economic Research, Inc.
    15. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    16. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    17. Davis, E Philip & Fagan, Gabriel, 1997. "Are Financial Spreads Useful Indicators of Future Inflation and Output Growth in EU Countries?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(6), pages 701-714, Nov.-Dec..
    18. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    19. Bai, Jushan & Ng, Serena, 2006. "Evaluating latent and observed factors in macroeconomics and finance," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 507-537.
    20. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    21. Harvey, Campbell R., 1988. "The real term structure and consumption growth," Journal of Financial Economics, Elsevier, vol. 22(2), pages 305-333, December.
    22. Plosser, Charles I. & Geert Rouwenhorst, K., 1994. "International term structures and real economic growth," Journal of Monetary Economics, Elsevier, vol. 33(1), pages 133-155, February.
    23. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    24. Forni, Mario & Reichlin, Lucrezia, 1995. "Let's Get Real: A Dynamic Factor Analytical Approach to Disaggregated Business Cycle," CEPR Discussion Papers 1244, C.E.P.R. Discussion Papers.
    25. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Forecasting output with the composite leading index: an ex ante analysis," Finance and Economics Discussion Series 90, Board of Governors of the Federal Reserve System (U.S.).
    26. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    27. Robert D. Laurent, 1988. "An interest rate-based indicator of monetary policy," Economic Perspectives, Federal Reserve Bank of Chicago, issue Jan, pages 3-14.
    28. Sharon Kozicki, 1997. "Predicting real growth and inflation with the yield spread," Economic Review, Federal Reserve Bank of Kansas City, issue Q IV, pages 39-57.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    2. Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
    3. Yucel, Eray, 2011. "A Review and Bibliography of Early Warning Models," MPRA Paper 32893, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:21:y:2011:i:1-2:p:43-60. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.