IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Predicting Inflation: Does The Quantity Theory Help?

Listed author(s):
  • Lance J. Bachmeier

    ()

    (East Carolina University)

  • Norman R. Swanson

    ()

    (Rutgers University)

Various inflation forecasting models are compared using a simulated out-of-sample forecasting framework. We focus on the question of whether monetary aggregates are useful for forecasting inflation, but unlike previous work we examine a wide range of forecast horizons and allow for estimated as well as theoretically specified cointegrating relationships in some of our models. Our findings indicate that there are forecasting gains from allowing monetary aggregates to enter into prediction models via cointegrating restrictions among money, prices, and output derived from a simple version of the quantity theory, but only when the cointegrating relations are specified a priori based on economic theory. When estimated cointegrating relations are used in a vector error correction (VEC) model, a vector autoregression (VAR) model in differences predicts better. These results hold, even during the 1990s, and evidence is presented suggesting that previous findings of a breakdown in the cointegrating relationship among prices, money, and output is the result of a failure of M2 as a measure of the money stock, and is not due to money demand instabilities. Two Monte Carlo experiments that lend credence to our findings are also reported on. The first shows that cointegration vector parameter estimation error is crucial when using VEC models for forecasting, and helps to explain previous findings of the failure of VEC models to forecast better than VAR models. The second shows that random walk and other atheoretical models routinely forecast better than correctly specified alternative models, due to parameter estimation error, indicating that caution needs to be exercised when interpreting the results of such comparisons, particularly when making statements concerning the usefulness of empirical models for use in policy-setting.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sas.rutgers.edu/virtual/snde/wp/2003-17.pdf
Download Restriction: no

Paper provided by Rutgers University, Department of Economics in its series Departmental Working Papers with number 200317.

as
in new window

Length:
Date of creation: 27 Oct 2003
Handle: RePEc:rut:rutres:200317
Contact details of provider: Postal:
New Jersey Hall - 75 Hamilton Street, New Brunswick, NJ 08901-1248

Phone: (732) 932-7363
Fax: (732) 932-7416
Web page: http://economics.rutgers.edu/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window

  1. Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
  2. Elliott, Graham & Jansson, Michael, 2000. "Testing for Unit Roots with Stationary Covariances," University of California at San Diego, Economics Working Paper Series qt47k7z69n, Department of Economics, UC San Diego.
  3. Arturo Estrella & Frederic S. Mishkin, 1996. "Is There a Role for Monetary Aggregates in the Conduct of Monetary Policy?," NBER Working Papers 5845, National Bureau of Economic Research, Inc.
  4. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
  5. Thomas J. Sargent & Noah Williams & Tao Zha, 2006. "The conquest of South American inflation," FRB Atlanta Working Paper 2006-20, Federal Reserve Bank of Atlanta.
  6. Eric M. Leeper & Jennifer E. Roush, 2003. "Putting "M" back in monetary policy," Proceedings, Federal Reserve Bank of Cleveland, pages 1217-1264.
  7. Dean Croushore, 1998. "Evaluating inflation forecasts," Working Papers 98-14, Federal Reserve Bank of Philadelphia.
  8. Lin, Jin-Lung & Tsay, Ruey S, 1996. "Co-integration Constraint and Forecasting: An Empirical Examination," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 519-538, Sept.-Oct.
  9. Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-276, March.
  10. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  11. Martin Feldstein & James H. Stock, 1994. "The Use of a Monetary Aggregate to Target Nominal GDP," NBER Chapters, in: Monetary Policy, pages 7-69 National Bureau of Economic Research, Inc.
  12. Peter F. Christoffersen & Francis X. Diebold, 1997. "Cointegration and Long-Horizon Forecasting," NBER Technical Working Papers 0217, National Bureau of Economic Research, Inc.
  13. Swanson, N.R. & White, H., 1995. "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Papers 04-95-12, Pennsylvania State - Department of Economics.
  14. John B. Carlson & Dennis L. Hoffman & Benjamin D. Keen & Robert H. Rasche, 1999. "Results of a study of the stability of cointegrating relations comprised of broad monetary aggregates," Working Paper 9917, Federal Reserve Bank of Cleveland.
  15. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
  16. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
  17. William Barnett & Apostolos Serletis & W. Erwin Diewert, 2005. "The Theory of Monetary Aggregation (book front matter)," Macroeconomics 0511008, EconWPA.
  18. William Barnett, 2005. "Monetary Aggregation," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 200510, University of Kansas, Department of Economics, revised Mar 2005.
  19. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
  20. Lars E.O. Svensson & Stefan Gerlach, 2001. "Money and inflation in the Euro Area: A case for monetary indicators?," BIS Working Papers 98, Bank for International Settlements.
  21. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
  22. Jeffery D. Amato & Thomas Laubach, 1999. "Forecast-based monetary policy," Research Working Paper 99-10, Federal Reserve Bank of Kansas City.
  23. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
  24. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  25. Corradi, Valentina & Swanson, Norman R. & Olivetti, Claudia, 2001. "Predictive ability with cointegrated variables," Journal of Econometrics, Elsevier, vol. 104(2), pages 315-358, September.
  26. Shaghil Ahmed & John H. Rogers, 1998. "Inflation and the great ratios: long-term evidence from the U.S," International Finance Discussion Papers 628, Board of Governors of the Federal Reserve System (U.S.).
  27. James H. Stock & Martin Feldstein, 1994. "Measuring Money Growth When Financial Markets Are Changing," NBER Working Papers 4888, National Bureau of Economic Research, Inc.
  28. Stock, James & Feldstein, Martin, 1996. "Measuring Money Growth When Financial Markets are Changing," Scholarly Articles 2799053, Harvard University Department of Economics.
  29. Ahmed, S. & Ickes, B. & Wang, P. & Yoo, S., 1989. "International Business Cycles," Papers 7-89-4, Pennsylvania State - Department of Economics.
  30. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
  31. Blinder, Alan S, 1997. "Is There a Core of Practical Macroeconomics That We Should All Believe?," American Economic Review, American Economic Association, vol. 87(2), pages 240-243, May.
  32. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
  33. N. Gregory Mankiw, 2000. "The Inexorable and Mysterious Tradeoff Between Inflation and Unemployment," Harvard Institute of Economic Research Working Papers 1905, Harvard - Institute of Economic Research.
  34. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
  35. Culver, Sarah E & Papell, David H, 1997. "Is There a Unit Root in the Inflation Rate? Evidence from Sequential Break and Panel Data Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(4), pages 435-444, July-Aug..
  36. Hoffman, Dennis L & Rasche, Robert H, 1996. "Assessing Forecast Performance in a Cointegrated System," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 495-517, Sept.-Oct.
  37. Swanson, Norman R., 1998. "Money and output viewed through a rolling window," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 455-474, May.
  38. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
  39. Clements, Michael P & Hendry, David F, 1996. "Intercept Corrections and Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 475-494, Sept.-Oct.
  40. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
  41. Ng, S. & Perron, P., 1994. "Unit Root Tests ARMA Models with Data Dependent Methods for the Selection of the Truncation Lag," Cahiers de recherche 9423, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  42. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rut:rutres:200317. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.