IDEAS home Printed from https://ideas.repec.org/a/bdr/ensayo/v22y2004i45p10-57.html
   My bibliography  Save this article

No-linealidades en la demanda de efectivo en Colombia: las redes neuronales como herramienta de pronóstico

Author

Listed:
  • Martha A. Misas A.

    ()

  • Enrique López E.

    ()

  • Carlos A. Arango A.

    ()

  • Juan Nicolás Hernández A.

    ()

Abstract

El pronóstico de la demanda de efectivo en Colombia se ha convertido en un verdadero reto en el pasado reciente. En la última década la economía sufrió importantes transformaciones, las cuales trajeron consigo fuertes cambios en las variables que la determinan: la inflación y, por ende, las tasas de interés cayeron sustancialmente, el sistema de pagos experimentó importantes innovaciones tecnológicas y el impuesto a las transacciones financieras incentivó el uso del efectivo. Estos cambios cobran especial relevancia en la medida en que la demanda de dinero esté asociada en forma no-lineal con sus determinantes. En este trabajo se explora la existencia de no-linealidad y se explota la flexibilidad de las redes neuronales artificiales (ANN) para modelarla. Los resultados muestran claras ganancias en los errores de pronóstico de las ANN frente a modelos de naturaleza lineal y evidencia significativa de la existencia de no-linealidades en la dinámica del efectivo.

Suggested Citation

  • Martha A. Misas A. & Enrique López E. & Carlos A. Arango A. & Juan Nicolás Hernández A., 2004. "No-linealidades en la demanda de efectivo en Colombia: las redes neuronales como herramienta de pronóstico," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 22(45), pages 10-57, June.
  • Handle: RePEc:bdr:ensayo:v:22:y:2004:i:45:p:10-57
    as

    Download full text from publisher

    File URL: http://repositorio.banrep.gov.co/bitstream/handle/20.500.12134/3254/?sequence=1
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Gertler, 1988. "Financial structure and aggregate economic activity: an overview," Proceedings, Federal Reserve Bank of Cleveland, pages 559-596.
    2. Markose, Sheri M & Loke, Yiing Jia, 2002. "Can cash hold its own? International comparisons: Theory and evidence," Economics Discussion Papers 3734, University of Essex, Department of Economics.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    4. Martha Misas Arango & Enrique López Enciso & Pablo Querubín, 2002. "La Inflación En Colombia: Una Aproximación Desde Las Redes Neuronales," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República - ESPE, vol. 20(41-42), pages 143-214, June.
    5. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    6. William A. Barnett & Douglas Fisher & Apostolos Serletis, 2006. "Consumer Theory and the Demand for Money," World Scientific Book Chapters,in: Money And The Economy, chapter 1, pages 3-43 World Scientific Publishing Co. Pte. Ltd..
    7. Breitung, Jorg, 2001. "Rank Tests for Nonlinear Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 331-340, July.
    8. Nikola Gradojevic & Jing Yang, 2000. "The Application of Artificial Neural Networks to Exchange Rate Forecasting: The Role of Market Microstructure Variables," Staff Working Papers 00-23, Bank of Canada.
    9. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    10. Mervyn A. King, 1999. "Challenges for monetary policy : new and old," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 11-57.
    11. Luis E. Arango & Andrés González, 2000. "A Nonlinear Specification of Demand for Cash in Colombia," Money Affairs, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(2), pages 207-226, July-Dece.
    12. Alvaro Escribano & Santiago Mira, 2002. "Nonlinear error correction models," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(5), pages 509-522, September.
    13. Charles Goodhart, 2000. "Can Central Banking Survive the IT Revolution?," FMG Special Papers sp125, Financial Markets Group.
    14. Buiter, Willem H & Armstrong, Clive A, 1978. "A Didactic Note on the Transactions Demand for Money and Behavior towards Risk: A Note," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 10(4), pages 529-538, November.
    15. Rech, Gianluigi, 2002. "Forecasting with artificial neural network models," SSE/EFI Working Paper Series in Economics and Finance 491, Stockholm School of Economics.
    16. Benjamin M. Friedman, 1999. "The Future of Monetary Policy: The Central Bank as an Army With Only a Signal Corps," NBER Working Papers 7420, National Bureau of Economic Research, Inc.
    17. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    18. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    19. Friedman, Benjamin M, 1999. "The Future of Monetary Policy: The Central Bank as an Army with Only a Signal Corps?," International Finance, Wiley Blackwell, vol. 2(3), pages 321-338, November.
    20. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    21. Martha Misas Arango & Enrique López Enciso & Pablo Querubín, 2002. "La Inflación En Colombia: Una Aproximación Desde Las Redes Neuronales," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República - ESPE, vol. 20(41-42), pages 143-214, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos A. Arango A. & Martha Misas A. & Juan Nicolás Hernández, 2004. "La Demanda de Especies Monetarias en Colombia: Estructura y Pronóstico," Borradores de Economia 309, Banco de la Republica de Colombia.

    More about this item

    Keywords

    : demanda de efectivo; redes neuronales artificiales; no linealidad; ARIMA; ARIMA con intervención y transferencia; VAR; VEC; pronóstico;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • E41 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Demand for Money
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:ensayo:v:22:y:2004:i:45:p:10-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Clorith Angélica Bahos Olivera). General contact details of provider: http://edirc.repec.org/data/brcgvco.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.