IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/2001-015.html
   My bibliography  Save this paper

The use and abuse of 'real-time' data in economic forecasting

Author

Listed:
  • Sheila Dolmas
  • Evan F. Koenig
  • Jeremy M. Piger

Abstract

We distinguish between three different ways of using real-time data to estimate forecasting equations and argue that the most popular approach should generally be avoided. The point is illustrated with a model that uses monthly industrial production, employment, and retail sales data to predict real GDP growth. When the model is estimated using our preferred method, its out-of-sample forecasting performance is superior to that obtained using conventional estimation and compares favorably with that of the Blue-Chip consensus.

Suggested Citation

  • Sheila Dolmas & Evan F. Koenig & Jeremy M. Piger, 2002. "The use and abuse of 'real-time' data in economic forecasting," Working Papers 2001-015, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:2001-015
    as

    Download full text from publisher

    File URL: http://research.stlouisfed.org/wp/more/2001-015/
    Download Restriction: no

    File URL: http://research.stlouisfed.org/wp/2001/2001-015.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephen K. McNees, 1987. "Consensus forecasts: tyranny of the majority?," New England Economic Review, Federal Reserve Bank of Boston, issue Nov, pages 15-21.
    2. Orphanides, Athanasios, 2003. "The quest for prosperity without inflation," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 633-663, April.
    3. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    4. Daniel M. Chin & Preston J. Miller, 1996. "Using monthly data to improve quarterly model forecasts," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 20(Spr), pages 16-33.
    5. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    6. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    7. Lamont, Owen A., 2002. "Macroeconomic forecasts and microeconomic forecasters," Journal of Economic Behavior & Organization, Elsevier, vol. 48(3), pages 265-280, July.
    8. Swanson Norman, 1996. "Forecasting Using First-Available Versus Fully Revised Economic Time-Series Data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-20, April.
    9. John C. Robertson & Ellis W. Tallman, 1998. "Data vintages and measuring forecast model performance," Economic Review, Federal Reserve Bank of Atlanta, vol. 83(Q 4), pages 4-20.
    10. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    11. Evan F. Koenig, 1996. "Capacity utilization as a real-time predictor of manufacturing output," Economic and Financial Policy Review, Federal Reserve Bank of Dallas, issue Q III, pages 16-23.
    12. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    13. David E. Runkle, 1998. "Revisionist history: how data revisions distort economic policy research," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 22(Fall), pages 3-12.
    14. Robert Ingenito & Bharat Trehan, 1996. "Using monthly data to predict quarterly output," Economic Review, Federal Reserve Bank of San Francisco, pages 3-11.
    15. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    16. David Laster & Paul Bennett & In Sun Geoum, 1999. "Rational Bias in Macroeconomic Forecasts," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 293-318.
    17. Bharat Trehan, 1989. "Forecasting growth in current quarter real GNP," Economic Review, Federal Reserve Bank of San Francisco, issue Win, pages 39-52.
    18. Braun, Steven N, 1990. "Estimation of Current-Quarter Gross National Product by Pooling Preliminary Labor-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(3), pages 293-304, July.
    19. N. Gregory Mankiw & Matthew D. Shapiro, 1986. "News or Noise? An Analysis of GNP Revisions," NBER Working Papers 1939, National Bureau of Economic Research, Inc.
    20. Tilman Ehrbeck & Robert Waldmann, 1996. "Why Are Professional Forecasters Biased? Agency versus Behavioral Explanations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(1), pages 21-40.
    21. Terry J. Fitzgerald & Preston J. Miller, 1989. "A simple way to estimate current-quarter GNP," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 13(Fall), pages 27-31.
    22. R. Mark Rogers, 1998. "A primer on short-term linkages between key economic data series," Economic Review, Federal Reserve Bank of Atlanta, vol. 83(Q 2), pages 40-54.
    23. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Forecasting output with the composite leading index: an ex ante analysis," Finance and Economics Discussion Series 90, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    2. Dean Croushore & Tom Stark, 2000. "A real-time data set for macroeconomists: does data vintage matter for forecasting?," Working Papers 00-6, Federal Reserve Bank of Philadelphia.
    3. Clements, Michael P. & Galvao, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation," Economic Research Papers 269743, University of Warwick - Department of Economics.
    4. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    5. Tom Stark, 2000. "Does current-quarter information improve quarterly forecasts for the U.S. economy?," Working Papers 00-2, Federal Reserve Bank of Philadelphia.
    6. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
    7. repec:lan:wpaper:470 is not listed on IDEAS
    8. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    9. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    10. Stekler, H.O., 2007. "The future of macroeconomic forecasting: Understanding the forecasting process," International Journal of Forecasting, Elsevier, vol. 23(2), pages 237-248.
    11. Marek RUSNAK, 2013. "Revisions to the Czech National Accounts: Properties and Predictability," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(3), pages 244-261, July.
    12. Dean Croushore & Tom Stark, 2002. "Is macroeconomic research robust to alternative data sets?," Working Papers 02-3, Federal Reserve Bank of Philadelphia.
    13. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    14. repec:lan:wpaper:425 is not listed on IDEAS
    15. repec:lan:wpaper:539557 is not listed on IDEAS
    16. van Dijk, D.J.C. & Franses, Ph.H.B.F. & Ravazzolo, F., 2007. "Evaluating real-time forecasts in real-time," Econometric Institute Research Papers EI 2007-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. repec:lan:wpaper:413 is not listed on IDEAS
    18. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    19. Frederick H. Wallace & Gary L. Shelley & Luis F. Cabrera Castellanos, 2004. "Pruebas de la neutralidad monetaria a largo plazo: el caso de Nicaragua," Monetaria, CEMLA, vol. 0(4), pages 407-418, octubre-d.
    20. Croushore, Dean & Evans, Charles L., 2006. "Data revisions and the identification of monetary policy shocks," Journal of Monetary Economics, Elsevier, vol. 53(6), pages 1135-1160, September.
    21. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    22. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    23. Clements, Michael P. & Beatriz Galvão, Ana, 2010. "First announcements and real economic activity," European Economic Review, Elsevier, vol. 54(6), pages 803-817, August.
    24. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.

    More about this item

    Keywords

    Forecasting; economic conditions - United States;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2001-015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Oates (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.