IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation

  • Clements, Michael P

    (Department of Economics, University of Warwick)

  • Galvão, Ana Beatriz

    (Bank of Portugal)

Although many macroeconomic series such as US real output growth are sampled quarterly, many potentially useful predictors are observed at a higher frequency. We look at whether a recently developed mixed data-frequency sampling (MIDAS) approach can improve forecasts of output growth and inflation. We carry out a number of related real-time forecast comparisons using various indicators as explanatory variables. We find that MIDAS model forecasts of output growth are more accurate at horizons less than one quarter using coincident indicators ; that MIDAS models are an effective way of combining information from multiple indicators ; and that the forecast accuracy of the unemployment-rate Phillips curve for inflation is enhanced using the MIDAS approach.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www2.warwick.ac.uk/fac/soc/economics/research/workingpapers/2006/twerp_773.pdf
Download Restriction: no

Paper provided by University of Warwick, Department of Economics in its series The Warwick Economics Research Paper Series (TWERPS) with number 773.

as
in new window

Length: 36 pages
Date of creation: 2006
Date of revision:
Handle: RePEc:wrk:warwec:773
Contact details of provider: Postal:
CV4 7AL COVENTRY

Phone: +44 (0) 2476 523202
Fax: +44 (0) 2476 523032
Web page: http://www2.warwick.ac.uk/fac/soc/economics/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Forecasting output with the composite leading index: an ex ante analysis," Finance and Economics Discussion Series 90, Board of Governors of the Federal Reserve System (U.S.).
  2. Jon Faust & John H. Rogers & Jonathan H. Wright, 2000. "News and noise in G-7 GDP announcements," International Finance Discussion Papers 690, Board of Governors of the Federal Reserve System (U.S.).
  3. Timmermann, Allan G, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
  4. Karamouzis, N. & Lombra, R., 1988. "Federal Reserve Policy Making: An Overview And Analysis Of The Policy Process," Papers 0-88-8, Pennsylvania State - Department of Economics.
  5. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
  6. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-84, September.
  7. Hendry, David F & Hans-Martin Krolzig, 2003. "The Properties of Automatic Gets Modelling," Royal Economic Society Annual Conference 2003 105, Royal Economic Society.
  8. Evan F. Koenig & Sheila Dolmas & Jeremy M. Piger, 2000. "The use and abuse of "real-time" data in economic forecasting," International Finance Discussion Papers 684, Board of Governors of the Federal Reserve System (U.S.).
  9. Faust, Jon & Rogers, John H. & H. Wright, Jonathan, 2003. "Exchange rate forecasting: the errors we've really made," Journal of International Economics, Elsevier, vol. 60(1), pages 35-59, May.
  10. Preston J. Miller & Daniel M. Chin, 1996. "Using monthly data to improve quarterly model forecasts," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Spr, pages 16-33.
  11. Patterson, K. D., 2003. "Exploiting information in vintages of time-series data," International Journal of Forecasting, Elsevier, vol. 19(2), pages 177-197.
  12. Karamouzis, N. & Lombra, R., 1989. "Federal Reserve Policymaking: An Overview And Analisys Of The Policy Process," Papers 8-88-5, Pennsylvania State - Department of Economics.
  13. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
  14. Birchenhall, Chris R & Osborn, Denise R & Sensier, Marianne, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-95, May.
  15. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, Elsevier.
  16. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
  17. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  18. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  19. Athanasios Orphanides and Simon van Norden, 2001. "The Reliability of Inflation Forecasts Based on Output Gaps in Real Time," Computing in Economics and Finance 2001 247, Society for Computational Economics.
  20. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
  21. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
  22. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
  23. Eric Ghysels & Jonathan H. Wright, 2006. "Forecasting professional forecasters," Finance and Economics Discussion Series 2006-10, Board of Governors of the Federal Reserve System (U.S.).
  24. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
  25. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  26. Julia Campos & David F. Hendry & Hans-Martin Krolzig, 2003. "Consistent Model Selection by an Automatic "Gets" Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 803-819, December.
  27. Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
  28. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
  29. Patterson, K D, 1995. "An Integrated Model of the Data Measurement and Data Generation Processes with an Application to Consumers' Expenditure," Economic Journal, Royal Economic Society, vol. 105(428), pages 54-76, January.
  30. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
  31. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
  32. John C. Robertson & Ellis W. Tallman, 1998. "Data vintages and measuring forecast model performance," Economic Review, Federal Reserve Bank of Atlanta, issue Q 4, pages 4-20.
  33. Joutz, Fred & Stekler, H. O., 2000. "An evaluation of the predictions of the Federal Reserve," International Journal of Forecasting, Elsevier, vol. 16(1), pages 17-38.
  34. Inoue, Atsushi & Kilian, Lutz, 2005. "How Useful is Bagging in Forecasting Economic Time Series? A Case Study of US CPI Inflation," CEPR Discussion Papers 5304, C.E.P.R. Discussion Papers.
  35. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
  36. Hendry, David F & Mizon, Grayham E, 1978. "Serial Correlation as a Convenient Simplification, not a Nuisance: A Comment on a Study of the Demand for Money by the Bank of England," Economic Journal, Royal Economic Society, vol. 88(351), pages 549-63, September.
  37. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-75, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wrk:warwec:773. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Margaret Nash)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.