IDEAS home Printed from
   My bibliography  Save this paper

Importance of the macroeconomic variables for variance prediction A GARCH-MIDAS approach




This paper applies the GARCH-MIDAS (Mixed Data Sampling) model to examine whether information contained in macroeconomic variables can help to predict short-term and long-term components of the return variance. A principal component analysis is used to incorporate the information contained in different variables. Our results show that including low-frequency macroeconomic information in the GARCH-MIDAS model improves the prediction ability of the model, particularly for the long-term variance component. Moreover, the GARCH-MIDAS model augmented with the first principal component outperforms all other specifications, indicating that the constructed principal component can be considered as a good proxy of the business cycle.

Suggested Citation

  • Asgharian, Hossein & Hou, Ai Jun & Javed, Farrukh, 2013. "Importance of the macroeconomic variables for variance prediction A GARCH-MIDAS approach," Knut Wicksell Working Paper Series 2013/4, Lund University, Knut Wicksell Centre for Financial Studies.
  • Handle: RePEc:hhs:luwick:2013_004

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Gabriel Perez-Quiros & Allan Timmermann, 2000. "Firm Size and Cyclical Variations in Stock Returns," Journal of Finance, American Finance Association, vol. 55(3), pages 1229-1262, June.
    2. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    3. Whitelaw, Robert F, 1994. " Time Variations and Covariations in the Expectation and Volatility of Stock Market Returns," Journal of Finance, American Finance Association, vol. 49(2), pages 515-541, June.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    6. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-593, Sept.-Oct.
    7. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    8. Alper, C. Emre & Fendoglu, Salih & Saltoglu, Burak, 2008. "Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets," MPRA Paper 7460, University Library of Munich, Germany.
    9. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    10. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    11. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    12. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    13. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    14. Clements, Michael P & Galvão, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation," The Warwick Economics Research Paper Series (TWERPS) 773, University of Warwick, Department of Economics.
    15. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2016. "Macro-Finance Determinants of the Long-Run Stock–Bond Correlation: The DCC-MIDAS Specification," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(3), pages 617-642.
    2. Asgharian, Hossein & Christiansen, Charlotte & Hou, Ai Jun, 2015. "Effects of macroeconomic uncertainty on the stock and bond markets," Finance Research Letters, Elsevier, vol. 13(C), pages 10-16.
    3. Emiliano Magrini & Ayca Donmez, 2013. "Agricultural Commodity Price Volatility and Its Macroeconomic Determinants: A GARCH-MIDAS Approach," JRC Working Papers JRC84138, Joint Research Centre (Seville site).

    More about this item


    Mixed data sampling; long-term variance component; macroeconomic variables; principal component; variance prediction.;

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:luwick:2013_004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Niclas Andrén) or (Frederik Lundtofte). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.