IDEAS home Printed from
   My bibliography  Save this paper

Direct vs bottom-up approach when forecasting GDP: reconciling literature results with institutional practice


  • Paulo Soares Esteves


How should we forecast GDP? Should we forecast directly the overall GDP or aggregate the forecasts for each of its components using some level of disaggregation? The search for the answer continues to motivate several horse races between these two approaches. Nevertheless, independently of the results, institutions producing shortterm forecasts usually opt for a bottom-up approach. This paper uses an application for the euro area to show that the option between direct and bottom-up approaches as the level of disaggregation chosen by forecasters is not determined by the results of those races.

Suggested Citation

  • Paulo Soares Esteves, 2011. "Direct vs bottom-up approach when forecasting GDP: reconciling literature results with institutional practice," Working Papers w201129, Banco de Portugal, Economics and Research Department.
  • Handle: RePEc:ptu:wpaper:w201129

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Franck Sédillot & Nigel Pain, 2003. "Indicator Models of Real GDP Growth in Selected OECD Countries," OECD Economics Department Working Papers 364, OECD Publishing.
    2. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    5. Nikita Perevalov & Philipp Maier, 2010. "On the Advantages of Disaggregated Data: Insights from Forecasting the U.S. Economy in a Data-Rich Environment," Staff Working Papers 10-10, Bank of Canada.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    8. John F. Henry & L. Randall Wray, 1998. "Economic Time," Macroeconomics 9811004, EconWPA.
    9. Christophe van Nieuwenhuyze, 2006. "A Generalized Dynamic Factor Model for the Belgian Economy: Identification of the Business Cycle and GDP Growth Forecasts," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(2), pages 213-247.
    10. Golinelli, Roberto & Parigi, Giuseppe, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    11. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    12. Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
    13. Fagan, Gabriel & Henry, Jérôme & Mestre, Ricardo, 2001. "An area-wide model (AWM) for the euro area," Working Paper Series 0042, European Central Bank.
    14. Isabel Yi Zheng & James Rossiter, 2006. "Using Monthly Indicators to Predict Quarterly GDP," Staff Working Papers 06-26, Bank of Canada.
    15. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    16. Duarte, Claudia & Rua, Antonio, 2007. "Forecasting inflation through a bottom-up approach: How bottom is bottom?," Economic Modelling, Elsevier, vol. 24(6), pages 941-953, November.
    17. Diron, Marie, 2006. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Working Paper Series 622, European Central Bank.
    18. Peter Grasmann & Filip Keereman, 2001. "An indicator-based short-term forecast for quarterly GDP in the euro area," European Economy - Economic Papers 2008 - 2015 154, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    19. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 276, European Central Bank.
    20. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    21. Alberto Baffigi & Roberto Golinelli & Giuseppe Parigi, 2002. "Real-time GDP forecasting in the euro area," Temi di discussione (Economic working papers) 456, Bank of Italy, Economic Research and International Relations Area.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Paulo Soares Esteves & António Rua, 2012. "Short-term forecasting for the portuguese economy: a methodological overview," Economic Bulletin and Financial Stability Report Articles, Banco de Portugal, Economics and Research Department.
    2. Francisco Craveiro Dias & Maximiano Pinheiro & António Rua, 2016. "A bottom-up approach for forecasting GDP in a data rich environment," Economic Bulletin and Financial Stability Report Articles, Banco de Portugal, Economics and Research Department.
    3. Cobb, Marcus P A, 2017. "Joint Forecast Combination of Macroeconomic Aggregates and Their Components," MPRA Paper 76556, University Library of Munich, Germany.
    4. Cobb, Marcus P A, 2017. "Forecasting Economic Aggregates Using Dynamic Component Grouping," MPRA Paper 81585, University Library of Munich, Germany.
    5. Marcus Cobb, 2014. "GDP Forecasting Bias due to Aggregation Inaccuracy in a Chain- Linking Framework," Working Papers Central Bank of Chile 721, Central Bank of Chile.
    6. Cobb, Marcus P A, 2017. "Aggregate Density Forecasting from Disaggregate Components Using Large VARs," MPRA Paper 76849, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w201129. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (DEE-NTDD). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.