IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

IFOCAST: Methoden der ifo-Kurzfristprognose

  • Kai Carstensen
  • Steffen Henzel

    ()

  • Johannes Mayr
  • Klaus Wohlrabe

    ()

Die Einschätzung und Vorhersage der gesamtwirtschaftlichen Situation im laufenden und im folgenden Quartal ist eine der zentralen Aufgaben der Konjunkturprognose. Das ifo Institut stützt sich bei seiner Kurzfristprognose des Bruttoinlandsprodukts auf den dreistufigen IFOCAST-Ansatz. In der ersten Stufe werden monatlich verfügbare Indikatoren, wie z.B. das ifo Geschäftsklima, extrapoliert und auf Quartalsebene aggregiert. Besonderes Augenmerk gilt dabei der Industrieproduktion, die mit Hilfe disaggregierter ifo-Umfragedaten fortgeschrieben wird. In einem zweiten Schritt wird die Bruttowertschöpfung der einzelnen Wirtschaftsbereiche mit Hilfe von Brückengleichungen prognostiziert. Im Rahmen eines Kombinationsansatzes wird eine Vielzahl von Modellen kombiniert, um dem Aspekt der Modellunsicherheit Rechnung zu tragen. In einem dritten Schritt werden die Quartalsprognosen einzelner Wirtschaftsbereiche anhand der ökonomischen Gewichte zur Prognose des Bruttoinlandsprodukts aggregiert. Es hat sich sowohl in der Prognoseliteratur als auch in der praktischen Umsetzung gezeigt, dass der gewählte Ansatz eine zuverlässige Kurzfristprognose liefert und flexibel genug ist, um auch extreme Entwicklungen gut aufzuzeigen. Zusätzlich zu diesem mehrstufigen Standardverfahren werden in diesem Artikel Mixed-Frequency-Modelle und Boosting-Algorithmen vorgestellt, welche den Standardansatz im Probebetrieb ergänzen.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cesifo-group.de/portal/page/portal/DocBase_Content/ZS/ZS-ifo_Schnelldienst/zs-sd-2009/ifosd_2009_23_2.pdf
Download Restriction: no

Article provided by Ifo Institute for Economic Research at the University of Munich in its journal ifo Schnelldienst.

Volume (Year): 62 (2009)
Issue (Month): 23 (December)
Pages: 15-28

as
in new window

Handle: RePEc:ces:ifosdt:v:62:y:2009:i:23:p:15-28
Contact details of provider: Postal: Poschingerstrasse 5, 81679 Munich, Germany
Phone: +49 (89) 9224-0
Fax: +49 (89) 985369
Web page: http://www.cesifo-group.deEmail:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
  2. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
  3. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
  4. Massimiliano Marcellino & James H. Stock & Mark W. Watson, . "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  5. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
  6. Wohlrabe, Klaus, 2009. "Forecasting with mixed-frequency time series models," Munich Dissertations in Economics 9681, University of Munich, Department of Economics.
  7. Projektgruppe Gemeinschaftsdiagnose, 2009. "Gemeinschaftsdiagnose Frühjahr 2009: Im Sog der Weltrezession," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 62(08), pages 03-81, 04.
  8. Barhoumi, K. & Rünstler, G. & Cristadoro, R. & Den Reijer, A. & Jakaitiene, A. & Jelonek, P. & Rua, A. & Ruth, K. & Benk, S. & Van Nieuwenhuyze, C., 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Working papers 215, Banque de France.
  9. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
  10. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages C25-C44, February.
  11. David Hendry & Michael Clements, 2001. "Pooling of Forecasts," Economics Series Working Papers 2002-W09, University of Oxford, Department of Economics.
  12. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
  13. Klaus Abberger & Wolfgang Nierhaus, 2008. "Die ifo Kapazitätsauslastung - ein gleichlaufender Indikator der deutschen Industriekonjunktur," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 61(16), pages 15-23, 08.
  14. Jan Jacobs & Jan-Egbert Sturm, 2004. "Do Ifo Indicators Help Explain Revisions in German Industrial Production?," CESifo Working Paper Series 1205, CESifo Group Munich.
  15. Stefan Mittnik & Peter A. Zadrozny, 2004. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data," CESifo Working Paper Series 1203, CESifo Group Munich.
  16. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
  17. Ulrich Fritsche & Sabine Stephan, 2002. "Leading Indicators of German Business Cycles - An Assessment of Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 222(3), pages 289-315.
  18. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
  19. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
  20. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
  21. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
  22. Jan J. J. Groen & George Kapetanios, 2008. "Revisiting useful approaches to data-rich macroeconomic forecasting," Staff Reports 327, Federal Reserve Bank of New York.
  23. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(01), pages 108-124, April.
  24. Franck Sédillot & Nigel Pain, 2003. "Indicator Models of Real GDP Growth in Selected OECD Countries," OECD Economics Department Working Papers 364, OECD Publishing.
  25. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
  26. Hahn, Elke & Skudelny, Frauke, 2008. "Early estimates of euro area real GDP growth: a bottom up approach from the production side," Working Paper Series 0975, European Central Bank.
  27. Felix Hüfner & Michael Schröder, 2002. "Prognosegehalt von ifo-Geschäftserwartungen und ZEW-Konjunkturerwartungen: Ein ökonometrischer Vergleich," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 222(3), pages 316-336.
  28. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
  29. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  30. Peter Grasmann & Filip Keereman, 2001. "An indicator-based short-term forecast for quarterly GDP in the euro area," European Economy - Economic Papers 154, Directorate General Economic and Monetary Affairs (DG ECFIN), European Commission.
  31. Steffen Henzel & Johannes Mayr, 2009. "The Virtues of VAR Forecast Pooling – A DSGE Model Based Monte Carlo Study," Ifo Working Paper Series Ifo Working Paper No. 65, Ifo Institute for Economic Research at the University of Munich.
  32. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ces:ifosdt:v:62:y:2009:i:23:p:15-28. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Klaus Wohlrabe)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.