IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

GDP nowcasting with ragged-edge data : A semi-parametric modelling

This papier formalizes the process of forecasting unbalanced monthly data sets in order to obtain robust nowcasts and forecasts of quarterly GDP growth rate through a semi-parametric modelling. This innovative approach lies on the use on non-parametric methods, based on nearest neighbors and on radial basis function approaches, ti forecast the monthly variables involved in the parametric modelling of GDP using bridge equations. A real-time experience is carried out on Euro area vintage data in order to anticipate, with an advance ranging from six to one months, the GDP flash estimate for the whole zone.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2008/B08082.pdf
Download Restriction: no

Paper provided by Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne in its series Documents de travail du Centre d'Economie de la Sorbonne with number b08082.

as
in new window

Length: 22 pages
Date of creation: Nov 2008
Date of revision: Nov 2009
Handle: RePEc:mse:cesdoc:b08082
Contact details of provider: Postal: 106-112 boulevard de l'Hôpital 75 647 PARIS CEDEX 13
Phone: + 33 44 07 81 00
Fax: + 33 1 44 07 83 01
Web page: http://centredeconomiesorbonne.univ-paris1.fr/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2007. "Opening the black box: structural factor models with large cross-sections," Working Paper Series 0712, European Central Bank.
  2. D'Agostino, Antonello & Giannone, Domenico & Surico, Paolo, 2007. "(Un)Predictability and Macroeconomic Stability," CEPR Discussion Papers 6594, C.E.P.R. Discussion Papers.
  3. Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 0633, European Central Bank.
  4. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," NBER Working Papers 10913, National Bureau of Economic Research, Inc.
  5. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP," Economics Working Papers ECO2008/16, European University Institute.
  6. Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
  7. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
  8. Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
  9. Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print peer-00844811, HAL.
  10. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  11. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
  12. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
  13. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
  14. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:b08082. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.