IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Can Google data help predict French youth unemployment?

  • Fondeur, Y.
  • Karamé, F.

According to the growing “Google econometrics” literature, Google queries may help predict economic activity. The aim of our paper is to test whether these data can enhance predictions of youth unemployment in France.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Economic Modelling.

Volume (Year): 30 (2013)
Issue (Month): C ()
Pages: 117-125

in new window

Handle: RePEc:eee:ecmode:v:30:y:2013:i:c:p:117-125
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  2. repec:hal:journl:halshs-00460461 is not listed on IDEAS
  3. Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Research Notes of the German Council for Social and Economic Data 41, German Council for Social and Economic Data (RatSWD).
  4. repec:zbw:rwirep:0155 is not listed on IDEAS
  5. Schmidt, Torsten & Vosen, Simeon, 2009. "Forecasting Private Consumption: Survey-based Indicators vs. Google Trends," Ruhr Economic Papers 155, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  7. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
  8. Konstantin A. Kholodilin & Maximilian Podstawski & Boriss Siliverstovs, 2010. "Do Google Searches Help in Nowcasting Private Consumption?: A Real-Time Evidence for the US," Discussion Papers of DIW Berlin 997, DIW Berlin, German Institute for Economic Research.
  9. Clark, Peter K., 1989. "Trend reversion in real output and unemployment," Journal of Econometrics, Elsevier, vol. 40(1), pages 15-32, January.
  10. Matthieu Cornec, 2006. "Analyse factorielle dynamique multifréquence appliquée à la datation de la conjoncture française," Économie et Prévision, Programme National Persée, vol. 172(1), pages 29-43.
  11. Catherine Doz & Fabrice Lenglart, 1999. "Analyse factorielle dynamique : test du nombre de facteurs, estimation et application à l'enquête de conjoncture dans l'industrie," Annals of Economics and Statistics, GENES, issue 54, pages 91-127.
  12. Matthieu Cornec, 2006. "Analyse factorielle dynamique multifréquence appliquée à la datation de la conjoncture française," Economie & Prévision, La Documentation Française, vol. 172(1), pages 29-43.
  13. Jennifer L. Castle & Nicholas W.P. Fawcett & David F. Hendry, 2009. "Nowcasting Is Not Just Contemporaneous Forecasting," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210(1), pages 71-89, October.
  14. Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2009. "GDP nowcasting with ragged-edge data : A semi-parametric modelling," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00344839, HAL.
  15. Kuttner, Kenneth N, 1994. "Estimating Potential Output as a Latent Variable," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 361-68, July.
  16. Matthieu Cornec & Thierry Deperraz, 2006. "Un nouvel indicateur synthétique mensuel résumant le climat des affaires dans les services en France," Économie et Statistique, Programme National Persée, vol. 395(1), pages 13-38.
  17. Koopman, S.J. & Franses, Ph.H.B.F., 2001. "Constructing seasonally adjusted data with time-varying confidence intervals," Econometric Institute Research Papers EI 2001-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  18. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
  19. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, Oxford University Press, vol. 102(4), pages 797-814.
  20. V. Dordonnat & S.J. Koopman & M. Ooms & A. Dessertaine & J. Collet, 2008. "An Hourly Periodic State Space Model for Modelling French National Electricity Load," Tinbergen Institute Discussion Papers 08-008/4, Tinbergen Institute.
  21. Francesco D’Amuri & Juri Marcucci, 2010. "“Google it!”Forecasting the US Unemployment Rate with a Google Job Search index," Working Papers 2010.31, Fondazione Eni Enrico Mattei.
  22. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  23. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, December.
  24. repec:adr:anecst:y:1999:i:54 is not listed on IDEAS
  25. S. J. Koopman & J. Durbin, 2003. "Filtering and smoothing of state vector for diffuse state-space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 85-98, 01.
  26. Ferrara, L. & Koopman, S J., 2010. "Common business and housing market cycles in the Euro area from a multivariate decomposition," Working papers 275, Banque de France.
  27. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  28. repec:adr:anecst:y:1999:i:54:p:05 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:30:y:2013:i:c:p:117-125. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.