IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview

Listed author(s):
  • Jennifer Castle
  • David Hendry

We consider the reasons for nowcasting, how nowcasts can be achieved, and the use and timing of information. The existence of contemporaneous data such as surveys is a major difference from forecasting, but many of the recent lessons about forecasting remain relevant. Given the extensive disaggregation over variables underlying flash estimates of aggregates, we show that automatic model selection can play a valuable role, especially when location shifts would otherwise induce nowcast failure. Thus, we address nowcasting when location shifts occur, probably with measurement error. We describe impulse-indicator saturation as a potential solution to such shifts, noting its relation to intercept corrections and to robust methods to avoid systematic nowcast failure. We propose a nowcasting strategy, building models of all disaggregate series by automatic methods, forecasting all variables before the end of each period, testing for shifts as available measures arrive, and adjusting forecasts of cognate missing series if substantive discrepancies are found. An alternative is switching to robust forecasts when breaks are detected. We apply a variant of this strategy to nowcast UK GDP growth, seeking pseudo real-time data availability.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.economics.ox.ac.uk/materials/papers/13019/paper674.pdf
Download Restriction: no

Paper provided by University of Oxford, Department of Economics in its series Economics Series Working Papers with number 674.

as
in new window

Length:
Date of creation: 27 Sep 2013
Handle: RePEc:oxf:wpaper:674
Contact details of provider: Postal:
Manor Rd. Building, Oxford, OX1 3UQ

Web page: http://www.economics.ox.ac.uk/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2008. "Short-Term Forecasting of GDP Using Large Monthly Datasets: A Pseudo Real-Time Forecast Evaluation Exercise," Bank of Lithuania Working Paper Series 1, Bank of Lithuania.
  2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
  3. Christophe Bontemps & Grayham E. Mizon, 2008. "Encompassing: Concepts and Implementation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 721-750, December.
  4. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
  5. repec:hal:journl:halshs-00460461 is not listed on IDEAS
  6. Angelini, Elena & Henry, Jerome & Marcellino, Massimiliano, 2006. "Interpolation and backdating with a large information set," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2693-2724, December.
  7. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
  8. Hendry, David F. & Hubrich, Kirstin, 2010. "Combining disaggregate forecasts or combining disaggregate information to forecast an aggregate," Working Paper Series 1155, European Central Bank.
  9. Forni M. & Hallin M., 2003. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Computing in Economics and Finance 2003 143, Society for Computational Economics.
  10. Jennifer L. Castle & David F. Hendry, 2010. "Nowcasting from disaggregates in the face of location shifts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 200-214.
  11. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, 08.
  12. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
  13. Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
  14. Gunnar Bardsen & Stan Hurn & Zoe McHugh, 2011. "Asymmetric unemployment rate dynamics in Australia," NCER Working Paper Series 71, National Centre for Econometric Research.
  15. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
  16. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  17. D'Agostino, Antonello & McQuinn, Kieran & O'Brien, Derry, 2008. "Now-casting Irish GDP," Research Technical Papers 9/RT/08, Central Bank of Ireland.
  18. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
  19. Jurgen A. Doornik, 2008. "Encompassing and Automatic Model Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 915-925, December.
  20. Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2009. "GDP nowcasting with ragged-edge data : A semi-parametric modelling," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00344839, HAL.
  21. Mario Forni & Filippo Altissimo & Riccardo Cristadoro & Marco Lippi & Giovanni Veronese., 2008. "New Eurocoin: Tracking Economic Growth in Real Time," Center for Economic Research (RECent) 020, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
  22. Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00844811, HAL.
  23. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2002. "Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area?," CEPR Discussion Papers 3146, C.E.P.R. Discussion Papers.
  24. Jennifer Castle & David Hendry & Jurgen A. Doornik, 2010. "Evaluating Automatic Model Selection," Economics Series Working Papers 474, University of Oxford, Department of Economics.
  25. repec:reg:rpubli:259 is not listed on IDEAS
  26. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164, December.
  27. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, 03.
  28. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
  29. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  30. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), pages -, December.
  31. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
  32. Ray Barrell & Karen Dury & Dawn Holland & Nigel Pain & Dirk te Velde, 1998. "Financial market contagion and the effects of the crises in East Asia, Russia and Latin America," National Institute Economic Review, National Institute of Economic and Social Research, vol. 166(1), pages 57-73, October.
  33. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank, Research Centre.
  34. David Hendry & Michael P. Clements, 2001. "Pooling of Forecasts," Economics Papers 2002-W9, Economics Group, Nuffield College, University of Oxford.
  35. D’Agostino, Antonello & Giannone, Domenico, 2006. "Comparing alternative predictors based on large-panel factor models," Working Paper Series 0680, European Central Bank.
  36. Michael P. Clements & David F. Hendry, 2005. "Guest Editors' Introduction: Information in Economic Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 713-753, December.
  37. Norman R. Swanson & Valentina Corradi & Andres Fernandez, 2011. "Information in the Revision Process of Real-Time Datasets," Departmental Working Papers 201107, Rutgers University, Department of Economics.
  38. Jennifer Castle & David Hendry & Nicholas W.P. Fawcett, 2008. "Forecasting with Equilibrium-correction Models during Structural Breaks," Economics Series Working Papers 408, University of Oxford, Department of Economics.
  39. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  40. Diron, Marie, 2006. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Working Paper Series 0622, European Central Bank.
  41. Michael P. Clements & David F. Hendry, 2001. "An Historical Perspective on Forecast Errors," National Institute Economic Review, National Institute of Economic and Social Research, vol. 177(1), pages 100-112, July.
  42. Domenico Giannone & Lucrezia Reichlin & Saverio Simonelli, 2009. "Nowcasting Euro Area Economic Activity in Real-Time: The Role of Confidence Indicators," CSEF Working Papers 240, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  43. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
  44. Israel Sancho & maximo Camacho, 2002. "Spanish diffusion indexes," Computing in Economics and Finance 2002 276, Society for Computational Economics.
  45. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, October.
  46. Ricard Gil & Steven D. Levitt, 2007. "Testing the Efficiency of Markets in the 2002 World Cup," Journal of Prediction Markets, University of Buckingham Press, vol. 1(3), pages 255-270, December.
  47. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
  48. Karen Croxson & J. James Reade, 2014. "Information and Efficiency: Goal Arrival in Soccer Betting," Economic Journal, Royal Economic Society, vol. 124(575), pages 62-91, 03.
  49. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
  50. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  51. Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank, Research Centre.
  52. James Mitchell & Richard J. Smith & Martin R. Weale & Stephen Wright & Eduardo L. Salazar, 2005. "An Indicator of Monthly GDP and an Early Estimate of Quarterly GDP Growth," Economic Journal, Royal Economic Society, vol. 115(501), pages 108-129, 02.
  53. Engle, Robert F. & Hendry, David F., 1993. "Testing superexogeneity and invariance in regression models," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 119-139, March.
  54. Clements Michael P. & Hendry David F., 2008. "Economic Forecasting in a Changing World," Capitalism and Society, De Gruyter, vol. 3(2), pages 1-20, October.
  55. repec:sae:niesru:v:166:y::i:1:p:57-73 is not listed on IDEAS
  56. David Hendry & Søren Johansen & Carlos Santos, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 337-339, April.
  57. Hendry, David F., 2000. "On detectable and non-detectable structural change," Structural Change and Economic Dynamics, Elsevier, vol. 11(1-2), pages 45-65, July.
  58. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
  59. Hendry David F & Mizon Grayham E, 2011. "Econometric Modelling of Time Series with Outlying Observations," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-26, February.
  60. Jennifer L. Castle & Nicholas W.P. Fawcett & David F. Hendry, 2009. "Nowcasting Is Not Just Contemporaneous Forecasting," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210(1), pages 71-89, October.
  61. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:674. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Monica Birds)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.