IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/32941.html
   My bibliography  Save this paper

Nowcasting Irish GDP

Author

Listed:
  • D'Agostino, Antonello
  • McQuinn, Kieran
  • O'Brien, Derry

Abstract

In this paper we present a dynamic factor model that produces nowcasts and backcasts of Irish quarterly GDP using timely data from a panel dataset of 35 indicators. We apply a recently developed methodology, whereby numerous potentially useful indicator series for Irish GDP can be availed of in a parsimonious manner and the unsynchronized nature of the release calendar for a wide range of higher frequency indicators can be handled. The nowcasts in this paper are generated by using dynamic factor analysis to extract common factors from the panel dataset. Bridge equations are then used to relate these factors to quarterly GDP estimates. We conduct an out-of-sample forecasting simulation exercise, where the performance of the factor model is compared with that of a standard benchmark model.

Suggested Citation

  • D'Agostino, Antonello & McQuinn, Kieran & O'Brien, Derry, 2011. "Nowcasting Irish GDP," MPRA Paper 32941, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:32941
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/32941/1/MPRA_paper_32941.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    3. Kitchen, John & Monaco, Ralph, 2003. "Real-Time Forecasting in Practice: The U.S. Treasury Staff's Real-Time GDP Forecast System," MPRA Paper 21068, University Library of Munich, Germany, revised Oct 2003.
    4. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    5. Matheson, Troy D., 2010. "An analysis of the informational content of New Zealand data releases: The importance of business opinion surveys," Economic Modelling, Elsevier, vol. 27(1), pages 304-314, January.
    6. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    7. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    8. Liebermann, Joelle, 2010. "Real-time nowcasting of GDP: Factor model versus professional forecasters," MPRA Paper 28819, University Library of Munich, Germany.
    9. Siliverstovs Boriss & Kholodilin Konstantin A., 2012. "Assessing the Real-Time Informational Content of Macroeconomic Data Releases for Now-/Forecasting GDP: Evidence for Switzerland," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 429-444, August.
    10. McCarthy, Colm, 2004. "Volatility in Irish Quarterly Macroeconomic Data," Quarterly Economic Commentary: Special Articles, Economic and Social Research Institute (ESRI), vol. 2004(1-Spring), pages 1-9.
    11. Bermingham, Colin, 2006. "An Examination of Data Revisions in the Quarterly National Accounts," Research Technical Papers 10/RT/06, Central Bank of Ireland.
    12. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
    13. Diron, Marie, 2006. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Working Paper Series 622, European Central Bank.
    14. Quill, Patrick, 2008. "An Analysis of Revisions to Growth Rates in the Irish Quarterly National Accounts," Quarterly Economic Commentary: Special Articles, Economic and Social Research Institute (ESRI), vol. 2008(3-Autumn).
    15. Rünstler, Gerhard & Sédillot, Franck, 2003. "Short-term estimates of euro area real GDP by means of monthly data," Working Paper Series 276, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    GDP; Forecasting; Factors;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:32941. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.