IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Real-time nowcasting of GDP: Factor model versus professional forecasters

  • Liebermann, Joelle

This paper performs a fully real-time nowcasting (forecasting) exercise of US real gross domestic product (GDP) growth using Giannone, Reichlin and Small (2008) factor model framework which enables one to handle unbalanced datasets as available in real-time. To this end, we have constructed a novel real-time database of vintages from October 2000 to June 2010 for a rich panel of US variables, and can hence reproduce, for any given day in that range, the exact information that was available to a real-time forecaster. We track the daily evolution throughout the current and next quarter of the model nowcasting performance. Analogously to Giannone et al. (2008) pseudo real-time results, we find that the precision of the nowcasts increases with information releases. Furthermore, the Survey of Professional Forecasters (SPF) does not carry additional information with respect to the model best specification, suggesting that the often cited superiority of the SPF, attributable to judgment, is weak over our sample. Then, as one moves forward along the real-time data flow, the continuous updating of the model provides a more precise estimate of current quarter GDP growth and the SPF becomes stale compared to all the model specifications. These results are robust to the recent recession period.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 28819.

in new window

Date of creation: Dec 2010
Date of revision:
Handle: RePEc:pra:mprapa:28819
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
  2. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-89, June.
  3. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  4. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  5. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
  6. Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 0633, European Central Bank.
  7. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
  8. D'Agostino, Antonello & Domenico, Giannone & Surico, Paolo, 2006. "(Un)Predictability and Macroeconomic Stability," Research Technical Papers 5/RT/06, Central Bank of Ireland.
  9. Angelini, Elena & Camba-Mendez, Gonzalo & Giannone, Domenico & Reichlin, Lucrezia & Rünstler, Gerhard, 2008. "Short-term Forecasts of Euro Area GDP Growth," CEPR Discussion Papers 6746, C.E.P.R. Discussion Papers.
  10. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, December.
  11. Catherine Dehon & Marjorie Gassner & Vincenzo Verardi, 2009. "Beware of 'Good' Outliers and Overoptimistic Conclusions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 437-452, 06.
  12. Antonello D'Agostino & Kieran McQuinn & Derry O’Brien, 2012. "Nowcasting Irish GDP," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing,Centre for International Research on Economic Tendency Surveys, vol. 2012(2), pages 21-31.
  13. Ben S. Bernanke & Jean Boivin, 2001. "Monetary Policy in a Data-Rich Environment," NBER Working Papers 8379, National Bureau of Economic Research, Inc.
  14. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, 01.
  15. Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00844811, HAL.
  16. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  17. Antonello D’ Agostino & Domenico Giannone, 2012. "Comparing Alternative Predictors Based on Large‐Panel Factor Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 306-326, 04.
  18. Boivin, Jean & Ng, Serena, 2005. "Understanding and Comparing Factor-Based Forecasts," MPRA Paper 836, University Library of Munich, Germany.
  19. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  20. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
  21. Jon Faust & Jonathan H. Wright, 2007. "Comparing Greenbook and Reduced Form Forecasts using a Large Realtime Dataset," NBER Working Papers 13397, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:28819. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.