Nowcasting Business Cycles Using Toll Data
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Nikolaos Askitas & Klaus F. Zimmermann, 2013. "Nowcasting Business Cycles Using Toll Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 299-306, July.
References listed on IDEAS
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Laurent Ferrara & Dominique Guégan & Patrick Rakotomarolahy, 2010.
"GDP nowcasting with ragged-edge data: a semi-parametric modeling,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 186-199.
- Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2008. "GDP nowcasting with ragged-edge data: A semi-parametric modelling," Documents de travail du Centre d'Economie de la Sorbonne b08082, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Nov 2009.
- Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00460461, HAL.
- Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2009. "GDP nowcasting with ragged-edge data : A semi-parametric modelling," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00344839, HAL.
- Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," PSE-Ecole d'économie de Paris (Postprint) halshs-00460461, HAL.
- Nikolay Robinzonov & Klaus Wohlrabe, 2010.
"Freedom of Choice in Macroeconomic Forecasting ,"
CESifo Economic Studies, CESifo Group, vol. 56(2), pages 192-220, June.
- Nikolay Robinzonov & Klaus Wohlrabe, 2008. "Freedom of Choice in Macroeconomic Forecasting: An Illustration with German Industrial Production and Linear Models," ifo Working Paper Series 57, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Stark, Tom & Croushore, Dean, 2002.
"Forecasting with a real-time data set for macroeconomists,"
Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
- Dean Croushore & Tom Stark, 2001. "Forecasting with a real-time data set for macroeconomists," Working Papers 01-10, Federal Reserve Bank of Philadelphia.
- Tom Stark and Dean Croushore, 2001. "Forecasting with a Real-Time Data Set for Macroeconomists," Computing in Economics and Finance 2001 258, Society for Computational Economics.
- Laurent Ferrara & Dominique Guegan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," Post-Print halshs-00460461, HAL.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005.
"Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases,"
CEPR Discussion Papers
5178, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
- Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roland Döhrn, 2013. "Transportation Data as a Tool for Nowcasting Economic Activity – The German Road Pricing System as an Example," Ruhr Economic Papers 0395, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
- Askitas, Nikos & Martinez, Anoop Bindra & Cereda, Fabio Saia, 2024.
"The IZA / Fable Swipe Consumption Index,"
IZA Discussion Papers
17311, Institute of Labor Economics (IZA).
- Nikos Askitas & Anoop Bindra Martinez & Fabio Saia Cereda & Nikolaos Askitas, 2024. "The IZA / Fable Swipe Consumption Index," CESifo Working Paper Series 11389, CESifo.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015.
"The internet as a data source for advancement in social sciences,"
International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The Internet as a Data Source for Advancement in Social Sciences," RatSWD Working Papers 248, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2015. "The Internet as a Data Source for Advancement in Social Sciences," IZA Discussion Papers 8899, Institute of Labor Economics (IZA).
- de Pedraza, Pablo & Vollbracht, Ian, 2020. "The Semicircular Flow of the Data Economy and the Data Sharing Laffer curve," GLO Discussion Paper Series 515, Global Labor Organization (GLO).
- Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
- Jannsen, Nils, 2023. "Der Lkw-Maut-Fahrleistungsindex: Ein nützlicher Frühindikator für die Industrieproduktion," Kiel Insight 2023.02, Kiel Institute for the World Economy (IfW Kiel).
- repec:zbw:rwirep:0395 is not listed on IDEAS
- Boysen-Hogrefe, Jens & Groll, Dominik & Hoffmann, Timo & Jannsen, Nils & Kooths, Stefan & Sonnenberg, Nils & Stamer, Vincent, 2023. "Deutsche Wirtschaft im Frühjahr 2023: Konjunktur fängt sich, Auftriebskräfte eher gering [German economy in spring 2023: Economy is stabilizing but little momentum going forward]," Kieler Konjunkturberichte 101, Kiel Institute for the World Economy (IfW Kiel).
- Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
- Roland Döhrn & Sönke Maatsch, 2012. "Der RWI/ISL-Containerumschlag-Index," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 92(5), pages 352-354, May.
- Simionescu, Mihaela & Zimmermann, Klaus F., 2017. "Big Data and Unemployment Analysis," GLO Discussion Paper Series 81, Global Labor Organization (GLO).
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023.
"Testing big data in a big crisis: Nowcasting under Covid-19,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022. "Testing big data in a big crisis: Nowcasting under COVID-19," JRC Working Papers in Economics and Finance 2022-06, Joint Research Centre, European Commission.
- Chew Lian Chua & Sarantis Tsiaplias & Ruining Zhou, 2024. "Constructing a high‐frequency World Economic Gauge using a mixed‐frequency dynamic factor model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2212-2227, September.
- Ademmer, Martin & Beckmann, Joscha & Bode, Eckhardt & Boysen-Hogrefe, Jens & Funke, Manuel & Hauber, Philipp & Heidland, Tobias & Hinz, Julian & Jannsen, Nils & Kooths, Stefan & Söder, Mareike & Stame, 2021. "Big Data in der makroökonomischen Analyse," Kieler Beiträge zur Wirtschaftspolitik 32, Kiel Institute for the World Economy (IfW Kiel).
- Selod,Harris & Soumahoro,Souleymane, 2020. "Big Data in Transportation : An Economics Perspective," Policy Research Working Paper Series 9308, The World Bank.
- Riccardo Corradini, 2019. "A Set of State–Space Models at a High Disaggregation Level to Forecast Italian Industrial Production," J, MDPI, vol. 2(4), pages 1-53, November.
- Döhrn, Roland, 2013. "Transportation Data as a Tool for Nowcasting Economic Activity – The German Road Pricing System as an Example," Ruhr Economic Papers 395, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Indaco, Agustín, 2020.
"From twitter to GDP: Estimating economic activity from social media,"
Regional Science and Urban Economics, Elsevier, vol. 85(C).
- Indaco, Agustín, 2019. "From Twitter to GDP: Estimating Economic Activity From Social Media," MPRA Paper 95885, University Library of Munich, Germany.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Jennifer Castle & David Hendry & Oleg Kitov, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
- Fondeur, Y. & Karamé, F., 2013.
"Can Google data help predict French youth unemployment?,"
Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
- Frédéric Karamé & Yannick Fondeur, 2012. "Can Google Data Help Predict French Youth Unemployment?," Documents de recherche 12-03, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Y. Fondeur & F. Karamé, 2013. "Can Google data help predict French youth unemployment?," Post-Print hal-02297071, HAL.
- Lenza Michele & Warmedinger Thomas, 2011. "A Factor Model for Euro-area Short-term Inflation Analysis," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 50-62, February.
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin, 2020. "A comparison of monthly global indicators for forecasting growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Working Paper
2013/06, Norges Bank.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012.
"Nowcasting German GDP: A comparison of bridge and factor models,"
Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
- Antipa, P. & Barhoumi, K. & Brunhes-Lesage, V. & Darné, O., 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Working papers 401, Banque de France.
- Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Rusnák, Marek, 2016.
"Nowcasting Czech GDP in real time,"
Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
- Marek Rusnak, 2013. "Nowcasting Czech GDP in Real Time," Working Papers 2013/06, Czech National Bank.
- Aastveit, Knut Are & Trovik, Tørres, 2014.
"Estimating the output gap in real time: A factor model approach,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
- Knut Are Aastveit & Tørres G. Trovik, 2008. "Estimating the output gap in real time: A factor model approach," Working Paper 2008/23, Norges Bank.
- Bouwman, Kees E. & Jacobs, Jan P.A.M., 2011.
"Forecasting with real-time macroeconomic data: The ragged-edge problem and revisions,"
Journal of Macroeconomics, Elsevier, vol. 33(4), pages 784-792.
- Bouwman, Kees E. & Jacobs, Jan P.A.M., 2005. "Forecasting with real-time macroeconomic data: the ragged-edge problem and revisions," CCSO Working Papers 200505, University of Groningen, CCSO Centre for Economic Research.
- Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
- Kurz-Kim, Jeong-Ryeol, 2018. "A note on the predictive power of survey data in nowcasting euro area GDP," Discussion Papers 10/2018, Deutsche Bundesbank.
- Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
- Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009.
"Pooling versus model selection for nowcasting with many predictors: an application to German GDP,"
Discussion Paper Series 1: Economic Studies
2009,03, Deutsche Bundesbank.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "Pooling versus model selection for nowcasting with many predictors: An application to German GDP," CEPR Discussion Papers 7197, C.E.P.R. Discussion Papers.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
- Chernis, Tony & Cheung, Calista & Velasco, Gabriella, 2020.
"A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 851-872.
- Tony Chernis & Calista Cheung & Gabriella Velasco, 2017. "A Three-Frequency Dynamic Factor Model for Nowcasting Canadian Provincial GDP Growth," Discussion Papers 17-8, Bank of Canada.
- Michael P. Clements & Ana Beatriz Galvão, 2009.
"Forecasting US output growth using leading indicators: an appraisal using MIDAS models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206, November.
- Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
More about this item
Keywords
production forecasting; transportation; business cycles; nowcasting; evaluating forecasts; telemetry; data mining; macroeconomic forecasting; new products;All these keywords.
JEL classification:
- C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
- E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BEC-2011-03-05 (Business Economics)
- NEP-FOR-2011-03-05 (Forecasting)
- NEP-MAC-2011-03-05 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp5522. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.