IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/10065.html
   My bibliography  Save this paper

Alternative methods for forecasting GDP

Author

Abstract

An empirical forecast accuracy comparison of the non-parametric method, known as multivariate Nearest Neighbor method, with parametric VAR modelling is conducted on the euro area GDP. Using both methods for nowcasting and forecasting the GDP, through the estimation of economic indicators plugged in the bridge equations, we get more accurate forecasts when using nearest neighbor method. We prove also the asymptotic normality of the multivariate k-nearest neighbor regression estimator for dependent time series, providing confidence intervals for point forecast in time series

Suggested Citation

  • Dominique Guegan & Patrick Rakotomarolahy, 2010. "Alternative methods for forecasting GDP," Documents de travail du Centre d'Economie de la Sorbonne 10065, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:10065
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2010/10065.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    2. Dominique Guégan & Nicolas Huck, 2005. "On the use of Nearest Neighbors in finance," Finance, Presses universitaires de Grenoble, vol. 26(2), pages 67-86.
    3. Laurent Ferrara & Dominique Guégan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 186-199.
    4. Andrew Blake, 1999. "An Artificial Neural Network System of Leading Indicators," National Institute of Economic and Social Research (NIESR) Discussion Papers 144, National Institute of Economic and Social Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jana Juriová, 2015. "The role of foreign sentiment in small open economy," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 4(2), pages 57-68, June.
    2. Jena, Pradyot Ranjan & Majhi, Ritanjali & Kalli, Rajesh & Managi, Shunsuke & Majhi, Babita, 2021. "Impact of COVID-19 on GDP of major economies: Application of the artificial neural network forecaster," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 324-339.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Patrick Rakotomarolahy, 2010. "Alternative methods for forecasting GDP," Post-Print halshs-00511979, HAL.
    2. Dominique Guegan & Patrick Rakotomarolahy, 2010. "Alternative methods for forecasting GDP," PSE-Ecole d'économie de Paris (Postprint) halshs-00511979, HAL.
    3. Harrison, Richard & Kapetanios, George & Yates, Tony, 2005. "Forecasting with measurement errors in dynamic models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 595-607.
    4. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    5. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    6. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    7. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    8. Bec, Frédérique & Kanda, Patrick, 2020. "Is inflation driven by survey-based, VAR-based or myopic expectations? An empirical assessment from US real-time data," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    9. Clements, Michael P. & Beatriz Galvão, Ana, 2010. "First announcements and real economic activity," European Economic Review, Elsevier, vol. 54(6), pages 803-817, August.
    10. Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
    11. Golinelli, Roberto & Parigi, Giuseppe, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    12. Kamada, Koichiro, 2005. "Real-time estimation of the output gap in Japan and its usefulness for inflation forecasting and policymaking," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 309-332, December.
    13. Sinclair, Tara M., 2019. "Characteristics and implications of Chinese macroeconomic data revisions," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1108-1117.
    14. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    15. Clements Michael P., 2012. "Forecasting U.S. Output Growth with Non-Linear Models in the Presence of Data Uncertainty," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-27, January.
    16. Fred Joutz & Michael P. Clements & Herman O. Stekler, 2007. "An evaluation of the forecasts of the federal reserve: a pooled approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 121-136.
    17. Kevin Lee & Nilss Olekalns & Kalvinder Shields, 2008. "Nowcasting, Business Cycle Dating and the Interpretation of New Information when Real Time Data are Available," Discussion Papers in Economics 08/17, Division of Economics, School of Business, University of Leicester.
    18. Lahiri, Kajal & Monokroussos, George, 2013. "Nowcasting US GDP: The role of ISM business surveys," International Journal of Forecasting, Elsevier, vol. 29(4), pages 644-658.
    19. Alberto Caruso & Laura Coroneo, 2019. "Predicting interest rates in real-time," Discussion Papers 19/18, Department of Economics, University of York.
    20. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.

    More about this item

    Keywords

    Forecast; economic indicators; GDP; Euro area; VAR; multivariate k-nearest neighbor regression; asymptotic normality;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:10065. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.