IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting with Factor-Augmented Error Correction Models

  • Anindya Banerjee
  • Massimiliano Marcellino
  • Igor Masten

As a generalization of the factor-augmented VAR (FAVAR) and of the Error Correction Model (ECM), Banerjee and Marcellino (2009) introduced the Factor- augmented Error Correction Model (FECM). The FECM combines error-correction, cointegration and dynamic factor models, and has several conceptual advantages over standard ECM and FAVAR models. In particular, it uses a larger dataset compared to the ECM and incorporates the long-run information lacking from the FAVAR because of the latter's specification in differences. In this paper we examine the forecasting performance of the FECM by means of an analytical example, Monte Carlo simula- tions and several empirical applications. We show that relative to the FAVAR, FECM generally offers a higher forecasting precision and in general marks a very useful step forward for forecasting with large datasets.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.bham.ac.uk/pub/RePEc/pdf/09-06.pdf
Download Restriction: no

Paper provided by Department of Economics, University of Birmingham in its series Discussion Papers with number 09-06.

as
in new window

Length: 41 pages
Date of creation: Jun 2009
Date of revision:
Handle: RePEc:bir:birmec:09-06
Contact details of provider: Postal: Edgbaston, Birmingham, B15 2TT
Web page: http://www.economics.bham.ac.uk

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Xu Cheng & P eter C. B. Phillips, 2009. "Semiparametric cointegrating rank selection," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages S83-S104, 01.
  2. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
  3. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, 07.
  4. Rudebusch, Glenn D & Svensson, Lars E O, 1998. "Policy Rules for Inflation Targeting," CEPR Discussion Papers 1999, C.E.P.R. Discussion Papers.
  5. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
  6. D'Agostino, Antonello & Giannone, Domenico & Surico, Paolo, 2007. "(Un)Predictability and Macroeconomic Stability," CEPR Discussion Papers 6594, C.E.P.R. Discussion Papers.
  7. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2005. "The generalised dynamic factor model: one sided estimation and forecasting," ULB Institutional Repository 2013/10129, ULB -- Universite Libre de Bruxelles.
  8. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
  9. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
  10. Massimiliano Marcellino & James Stock & Mark Watson, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," Working Papers 285, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  11. Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-76, March.
  12. Robert F. Engle & Sharon Kozicki, 1990. "Testing For Common Features," NBER Technical Working Papers 0091, National Bureau of Economic Research, Inc.
  13. Carriero, A. & Kapetanios, G. & Marcellino, M., 2009. "Forecasting exchange rates with a large Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
  14. Refet S. Gürkaynak & Andrew T. Levin & Eric T. Swanson, 2006. "Does inflation targeting anchor long-run inflation expectations? evidence from long-term bond yields in the U.S., U.K., and Sweden," Working Paper Series 2006-09, Federal Reserve Bank of San Francisco.
  15. Carlo Ambrogio Favero & Massimilano Marcellino & Francesca Neglia, . "Principal components at work: The empirical analysis of monetary policy with large datasets," Working Papers 223, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  16. Marcellino, Massimiliano & Schumacher, Christian, 2008. "Factor-MIDAS for now- and forecasting with ragged-edge data: A model comparison for German GDP," CEPR Discussion Papers 6708, C.E.P.R. Discussion Papers.
  17. Anindya Banerjee & Massimiliano Marcellino, 2008. "Factor-augmented Error Correction Models," Economics Working Papers ECO2008/15, European University Institute.
  18. Breitung, Jörg & Eickmeier, Sandra, 2005. "Dynamic factor models," Discussion Paper Series 1: Economic Studies 2005,38, Deutsche Bundesbank, Research Centre.
  19. James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
  20. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
  21. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
  22. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," CEPR Discussion Papers 6706, C.E.P.R. Discussion Papers.
  23. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  24. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  25. Hall, Anthony D & Anderson, Heather M & Granger, Clive W J, 1992. "A Cointegration Analysis of Treasury Bill Yields," The Review of Economics and Statistics, MIT Press, vol. 74(1), pages 116-26, February.
  26. Clements, M.P. & Hendry, D.F., 1992. "Forecasting in Cointegrated Systems," Economics Series Working Papers 99139, University of Oxford, Department of Economics.
  27. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
  28. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
  29. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, March.
  30. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-95, October.
  31. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bir:birmec:09-06. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Colin Rowat)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.