IDEAS home Printed from https://ideas.repec.org/p/chb/bcchwp/860.html
   My bibliography  Save this paper

Proyección de la Inflación en Chile con Métodos de Machine Learning

Author

Listed:
  • Felipe Leal
  • Carlos Molina
  • Eduardo Zilberman

Abstract

In this paper, in line with Medeiros et al. (2019) for the US, we apply Machine Learning (ML) methods with Big Data to forecast the total and underlying CPI inflation in Chile. We show that the ML methods do not gain in the inflation projection for the Chilean case in a consistent way on simple and univariate linear competitors such as the AR, the mean and the median of the past inflation, which have proven to be highly competitive. In fact, these are the winning methods in many cases. A second contribution of this work is the construction of a large dataset with macroeconomic variables related to the Chilean economy similar to McCracken and Ng (2016), who built (and maintains) a similar data for the United States.

Suggested Citation

  • Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
  • Handle: RePEc:chb:bcchwp:860
    as

    Download full text from publisher

    File URL: https://www.bcentral.cl/documents/33528/133326/DTBC_860.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
    3. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    4. Nicolás Chanut & Mario Marcel C. & Carlos A. Medel V., 2019. "Can economic perception surveys improve macroeconomic forecasting in Chile?," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 22(3), pages 034-097, December.
    5. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    6. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    7. Carlos Medel, 2015. "Fuelling Future Prices: Oil Price and Global Inflation," Working Papers Central Bank of Chile 770, Central Bank of Chile.
    8. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    9. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    10. Pablo Pincheira & Andrés Gatty, 2016. "Forecasting Chilean inflation with international factors," Empirical Economics, Springer, vol. 51(3), pages 981-1010, November.
    11. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    12. Chen, Yu-chin & Turnovsky, Stephen J. & Zivot, Eric, 2014. "Forecasting inflation using commodity price aggregates," Journal of Econometrics, Elsevier, vol. 183(1), pages 117-134.
    13. Rodrigo Fuentes & Fabián Gredig & Mauricio Larraín, 2008. "La brecha de producto en Chile: medición y evaluación," Investigación Conjunta-Joint Research, in: Centro de Estudios Monetarios Latinoamericanos (CEMLA) (ed.), Estimación y Uso de Variables no Observables en la Región, edition 1, volume 1, chapter 3, pages 69-102, Centro de Estudios Monetarios Latinoamericanos, CEMLA.
    14. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    15. Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
    16. Pablo M. Pincheira & Carlos A. Medel, 2015. "Forecasting Inflation with a Simple and Accurate Benchmark: The Case of the US and a Set of Inflation Targeting Countries," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 2-29, January.
    17. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    18. James H. Stock & Mark W. Watson, 2010. "Modeling inflation after the crisis," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 173-220.
    19. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    20. -, 2015. "CEPAL Review no. 116," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), August.
    21. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
    22. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    23. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    24. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    25. Pincheira-Brown, Pablo & Selaive, Jorge & Nolazco, Jose Luis, 2019. "Forecasting inflation in Latin America with core measures," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1060-1071.
    26. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    27. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    28. Pincheira Brown, Pablo & Rubio Hurtado, Hernán, 2015. "The low predictive power of simple Phillips curves in Chile," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), August.
    29. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    30. Jeffrey C. Chen & Abe Dunn & Kyle Hood & Alexander Driessen & Andrea Batch, 2019. "Off to the Races: A Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators," NBER Chapters, in: Big Data for Twenty-First-Century Economic Statistics, pages 373-402, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    2. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    3. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    4. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    5. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    6. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    7. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    8. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
    9. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
    10. Dimitris Korobilis, 2018. "Machine Learning Macroeconometrics: A Primer," Working Paper series 18-30, Rimini Centre for Economic Analysis.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    13. Pijush Kanti Das & Prabir Kumar Das, 2024. "Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 493-517, June.
    14. Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
    15. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    16. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.
    17. DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
    18. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    19. Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
    20. Anesti, Nikoleta & Kalamara, Eleni & Kapetanios, George, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chb:bcchwp:860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alvaro Castillo (email available below). General contact details of provider: https://edirc.repec.org/data/bccgvcl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.