IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/80496.html
   My bibliography  Save this paper

Forecasting Inflation in Latin America with Core Measures

Author

Listed:
  • Pincheira, Pablo
  • Selaive, Jorge
  • Nolazco, Jose Luis

Abstract

We explore the ability of core inflation to predict headline CPI annual inflation for a sample of 8 developing economies in Latin America during the period January 1995-May 2017. Our in-sample and out-of-sample results are roughly consistent in providing evidence of predictability in the great majority of our countries, although, as usual, a slightly stronger evidence of predictability comes from the in-sample analysis. The bulk of the out-of-sample evidence of predictability concentrates at the short horizons of 1 and 6 months. In contrast, at longer horizons of 12 and 24 months, we only find evidence of predictability for two countries: Chile and Colombia. This is both important and challenging, given that monetary authorities in our sample of developing countries are currently implementing or given steps toward the future implementation of inflation targeting regimes, which are heavily based on long run inflation forecasts.

Suggested Citation

  • Pincheira, Pablo & Selaive, Jorge & Nolazco, Jose Luis, 2017. "Forecasting Inflation in Latin America with Core Measures," MPRA Paper 80496, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:80496
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/80496/1/MPRA_paper_80496.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    2. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    3. Blix, Mårten, 1999. "Forecasting Swedish Inflation With a Markov Switching VAR," Working Paper Series 76, Sveriges Riksbank (Central Bank of Sweden).
    4. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    5. Canova, Fabio, 2007. "G-7 Inflation Forecasts: Random Walk, Phillips Curve Or What Else?," Macroeconomic Dynamics, Cambridge University Press, vol. 11(1), pages 1-30, February.
    6. Raffaella Giacomini & Barbara Rossi, 2009. "Detecting and Predicting Forecast Breakdowns," Review of Economic Studies, Oxford University Press, vol. 76(2), pages 669-705.
    7. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    8. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    9. James H. Stock & Mark W. Watson, 2016. "Core Inflation and Trend Inflation," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 770-784, October.
    10. Clark, Todd E. & McCracken, Michael W., 2012. "In-sample tests of predictive ability: A new approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 1-14.
    11. Pablo M. Pincheira & Carlos A. Medel, 2015. "Forecasting Inflation with a Simple and Accurate Benchmark: The Case of the US and a Set of Inflation Targeting Countries," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 2-29, January.
    12. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
    13. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    14. Troy D. Matheson, 2006. "Factor Model Forecasts for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 2(2), May.
    15. Cogley, Timothy, 2002. "A Simple Adaptive Measure of Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 94-113, February.
    16. Pincheira, Pablo & Selaive, Jorge & Nolazco, Jose Luis, 2016. "The Evasive Predictive Ability of Core Inflation," MPRA Paper 68704, University Library of Munich, Germany.
    17. Theodore M. Crone & N. Neil K. Khettry & Loretta J. Mester & Jason A. Novak, 2013. "Core Measures of Inflation as Predictors of Total Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2-3), pages 505-519, March.
    18. Todd E. Clark, 2001. "Comparing measures of core inflation," Economic Review, Federal Reserve Bank of Kansas City, vol. 86(Q II), pages 5-31.
    19. Robert W. Rich & Charles Steindel, 2007. "A comparison of measures of core inflation," Economic Policy Review, Federal Reserve Bank of New York, vol. 13(Dec), pages 19-38.
    20. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    21. repec:mcb:jmoncb:v:45:y:2013:i::p:505-519 is not listed on IDEAS
    22. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    23. Colin Bermingham, 2007. "How Useful is Core Inflation for Forecasting Headline Inflation?," The Economic and Social Review, Economic and Social Studies, vol. 38(3), pages 355-377.
    24. N. Neil K. Khettry & Loretta J. Mester, 2006. "Core inflation as a predictor of total inflation," Research Rap Special Report, Federal Reserve Bank of Philadelphia, issue Apr.
    25. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
    26. Freeman, Donald G., 1998. "Do core inflation measures help forecast inflation?," Economics Letters, Elsevier, vol. 58(2), pages 143-147, February.
    27. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    28. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    29. Pincheira, Pablo M. & West, Kenneth D., 2016. "A comparison of some out-of-sample tests of predictability in iterated multi-step-ahead forecasts," Research in Economics, Elsevier, vol. 70(2), pages 304-319.
    30. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    31. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    32. Brent Meyer & Mehmet Pasaogullari, 2010. "Simple ways to forecast inflation: what works best?," Economic Commentary, Federal Reserve Bank of Cleveland, issue Dec.
    33. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    34. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    35. Julie K. Smith, 2012. "PCE inflation and core inflation," Working Papers 1203, Federal Reserve Bank of Dallas.
    36. Le Bihan, Herve & Sedillot, Franck, 2000. "Do core inflation measures help forecast inflation?: Out-of-sample evidence from French data," Economics Letters, Elsevier, vol. 69(3), pages 261-266, December.
    37. Domenico Giannone & Troy D. Matheson, 2007. "A New Core Inflation Indicator for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 145-180, December.
    38. James B. Bullard, 2011. "Measuring inflation: the core is rotten," Review, Federal Reserve Bank of St. Louis, vol. 93(July), pages 223-234.
    39. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.),Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    40. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    41. Lei Lei Song, 2005. "Do underlying measures of inflation outperform headline rates? Evidence from Australian data," Applied Economics, Taylor & Francis Journals, vol. 37(3), pages 339-345.
    42. Pincheira Brown, Pablo & Rubio Hurtado, Hernán, 2015. "The low predictive power of simple Phillips curves in Chile," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), August.
    43. Todd E. Clark & Michael W. McCracken, 2013. "Evaluating the accuracy of forecasts from vector autoregressions," Working Papers 2013-010, Federal Reserve Bank of St. Louis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.

    More about this item

    Keywords

    Inflation; Forecasting; Time Series; Monetary Policy; Core Inflation; Developing Countries.;

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • E50 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - General
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
    • F4 - International Economics - - Macroeconomic Aspects of International Trade and Finance
    • F41 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Open Economy Macroeconomics
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O23 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Fiscal and Monetary Policy in Development
    • O54 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Latin America; Caribbean

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:80496. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.