IDEAS home Printed from https://ideas.repec.org/p/fip/fedlwp/2009-051.html

In-sample tests of predictive ability: a new approach

Author

Abstract

This paper presents analytical, Monte Carlo, and empirical evidence linking in-sample tests of predictive content and out-of-sample forecast accuracy. Our approach focuses on the negative effect that finite-sample estimation error has on forecast accuracy despite the presence of significant population-level predictive content. Specifically, we derive simple-to-use in-sample tests that test not only whether a particular variable has predictive content but also whether this content is estimated precisely enough to improve forecast accuracy. Our tests are asymptotically non-central chi-square or non-central normal. We provide a convenient bootstrap method for computing the relevant critical values. In the Monte Carlo and empirical analysis, we compare the effectiveness of our testing procedure with more common testing procedures.

Suggested Citation

  • Todd E. Clark & Michael W. McCracken, 2009. "In-sample tests of predictive ability: a new approach," Working Papers 2009-051, Federal Reserve Bank of St. Louis.
  • Handle: RePEc:fip:fedlwp:2009-051
    DOI: 10.20955/wp.2009.051
    as

    Download full text from publisher

    File URL: https://doi.org/10.20955/wp.2009.051
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.20955/wp.2009.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burcu Erik & Marco J. Lombardi & Dubravko Mihaljek & Hyun Song Shin, 2020. "The Dollar, Bank Leverage, and Real Economic Activity: An Evolving Relationship," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 529-534, May.
    2. Hillebrand, Eric & Lukas, Manuel & Wei, Wei, 2021. "Bagging weak predictors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 237-254.
    3. Calhoun, Gray, 2014. "Out-Of-Sample Comparisons of Overfit Models," Staff General Research Papers Archive 32462, Iowa State University, Department of Economics.
    4. Chauvet, Marcelle & Senyuz, Zeynep & Yoldas, Emre, 2015. "What does financial volatility tell us about macroeconomic fluctuations?," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 340-360.
    5. Tom Boot & Andreas Pick, 2017. "A near optimal test for structural breaks when forecasting under square error loss," Tinbergen Institute Discussion Papers 17-039/III, Tinbergen Institute.
    6. Hsiu-Hsin Ko, 2016. "Exchange Rate Predictability in Finite Samples," The Japanese Economic Review, Springer, vol. 67(3), pages 361-378, September.
    7. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    8. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    9. Petrella, Ivan & Drechsel, Thomas & Antolin-Diaz, Juan, 2014. "Following the Trend: Tracking GDP when Long-Run Growth is Uncertain," CEPR Discussion Papers 10272, C.E.P.R. Discussion Papers.
    10. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    11. Hsiu-Hsin Ko, 2016. "Exchange Rate Predictability in Finite Samples," The Japanese Economic Review, Japanese Economic Association, vol. 67(3), pages 361-378, September.
    12. Pincheira-Brown, Pablo & Selaive, Jorge & Nolazco, Jose Luis, 2019. "Forecasting inflation in Latin America with core measures," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1060-1071.
    13. Su, Hao & Ying, Chengwei & Zhu, Xiaoneng, 2022. "Disaster risk matters in the bond market," Finance Research Letters, Elsevier, vol. 47(PA).
    14. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    15. Mohan Subbiah & Frank J Fabozzi, 2016. "Equity style allocation: A nonparametric approach," Journal of Asset Management, Palgrave Macmillan, vol. 17(3), pages 141-164, May.
    16. Burcu Erik & Marco Jacopo Lombardi & Dubravko Mihaljek & Hyun Song Shin, 2019. "Financial conditions and purchasing managers' indices: exploring the links," BIS Quarterly Review, Bank for International Settlements, September.

    More about this item

    Keywords

    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:2009-051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Scott St. Louis (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.