IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v183y2014i1p117-134.html
   My bibliography  Save this article

Forecasting inflation using commodity price aggregates

Author

Listed:
  • Chen, Yu-chin
  • Turnovsky, Stephen J.
  • Zivot, Eric

Abstract

This paper shows that for five small commodity-exporting countries that have adopted inflation targeting monetary policies, world commodity price aggregates have predictive power for their CPI and PPI inflation, particularly once possible structural breaks are taken into account. This conclusion is robust to using either disaggregated or aggregated commodity price indexes (although the former perform better), the currency denomination of the commodity prices, and to using mixed-frequency data. In pseudo out-of-sample forecasting, commodity indexes outperform the random walk and AR(1) processes, although the improvements over the latter are sometimes modest.

Suggested Citation

  • Chen, Yu-chin & Turnovsky, Stephen J. & Zivot, Eric, 2014. "Forecasting inflation using commodity price aggregates," Journal of Econometrics, Elsevier, vol. 183(1), pages 117-134.
  • Handle: RePEc:eee:econom:v:183:y:2014:i:1:p:117-134
    DOI: 10.1016/j.jeconom.2014.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407614001547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2014.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cashin, Paul & Cespedes, Luis F. & Sahay, Ratna, 2004. "Commodity currencies and the real exchange rate," Journal of Development Economics, Elsevier, vol. 75(1), pages 239-268, October.
    2. Ben S. Bernanke & Mark Gertler, 2001. "Should Central Banks Respond to Movements in Asset Prices?," American Economic Review, American Economic Association, vol. 91(2), pages 253-257, May.
    3. Charles Engel & Nelson C. Mark & Kenneth D. West, 2008. "Exchange Rate Models Are Not as Bad as You Think," NBER Chapters, in: NBER Macroeconomics Annual 2007, Volume 22, pages 381-441, National Bureau of Economic Research, Inc.
    4. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    5. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, Oxford University Press, vol. 125(3), pages 1145-1194.
    6. Stephen G. Cecchetti & Hans Genberg & Sushil Wadhwani, 2002. "Asset Prices in a Flexible Inflation Targeting Framework," NBER Working Papers 8970, National Bureau of Economic Research, Inc.
    7. Søren Johansen & Rocco Mosconi & Bent Nielsen, 2000. "Cointegration analysis in the presence of structural breaks in the deterministic trend," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 216-249.
    8. Hooker, Mark A, 2002. "Are Oil Shocks Inflationary? Asymmetric and Nonlinear Specifications versus Changes in Regime," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 540-561, May.
    9. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    10. Ben S. Bernanke & Mark Gertler, 1999. "Monetary policy and asset price volatility," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 77-128.
    11. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    12. Chen, Yu-chin & Rogoff, Kenneth, 2003. "Commodity currencies," Journal of International Economics, Elsevier, vol. 60(1), pages 133-160, May.
    13. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    14. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    15. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    16. S. Brock Blomberg & Ethan S. Harris, 1995. "The commodity-consumer price connection: fact or fable?," Economic Policy Review, Federal Reserve Bank of New York, vol. 1(Oct), pages 21-38.
    17. Mahdavi, Saeid & Zhou, Su, 1997. "Gold and commodity prices as leading indicators of inflation: Tests of long-run relationship and predictive performance," Journal of Economics and Business, Elsevier, vol. 49(5), pages 475-489.
    18. Søren Johansen & Rocco Mosconi & Bent Nielsen, 2000. "Cointegration analysis in the presence of structural breaks in the deterministic trend," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 216-249.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    2. Afees A. Salisu & Raymond Swaray & Idris Adediran, 2018. "Improving the predictability of commodity prices in US inflation: The role of coffee price," Working Papers 041, Centre for Econometric and Allied Research, University of Ibadan.
    3. Balcilar, Mehmet & Katzke, Nico & Gupta, Rangan, 2017. "Do precious metal prices help in forecasting South African inflation?," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 63-72.
    4. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    5. Roy, Rudra Prosad & Sinha Roy, Saikat, 2022. "Commodity futures prices pass-through and monetary policy in India: Does asymmetry matter?," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    6. repec:ipg:wpaper:19 is not listed on IDEAS
    7. Yannick Le Pen & Benoît Sévi, 2013. "Futures Trading and the Excess Comovement of Commodity Prices," Working Papers halshs-00793724, HAL.
    8. repec:ipg:wpaper:2013-019 is not listed on IDEAS
    9. repec:dau:papers:123456789/11382 is not listed on IDEAS
    10. Tule, Moses K. & Salisu, Afees A. & Chiemeke, Charles C., 2019. "Can agricultural commodity prices predict Nigeria's inflation?," Journal of Commodity Markets, Elsevier, vol. 16(C).
    11. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    12. Christopher J. Neely & David E. Rapach, 2008. "Real interest rate persistence: evidence and implications," Review, Federal Reserve Bank of St. Louis, vol. 90(Nov), pages 609-642.
    13. Travaglini, Guido, 2007. "The U.S. Dynamic Taylor Rule With Multiple Breaks, 1984-2001," MPRA Paper 3419, University Library of Munich, Germany, revised 15 Jun 2007.
    14. Balcilar, Mehmet & Hammoudeh, Shawkat & Asaba, Nwin-Anefo Fru, 2015. "A regime-dependent assessment of the information transmission dynamics between oil prices, precious metal prices and exchange rates," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 72-89.
    15. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    16. Joscha Beckmann & Robert Czudaj, 2013. "Oil and gold price dynamics in a multivariate cointegration framework," International Economics and Economic Policy, Springer, vol. 10(3), pages 453-468, September.
    17. Talabong, Hervé, 2012. "Demande de monnaie en zone CEMAC : une modélisation par coïntégration avec ruptures structurelles," L'Actualité Economique, Société Canadienne de Science Economique, vol. 88(4), pages 429-458, Décembre.
    18. Juergen Amann & Paul Middleditch, 2017. "Growth in a time of austerity: evidence from the UK," Scottish Journal of Political Economy, Scottish Economic Society, vol. 64(4), pages 349-375, September.
    19. Ciner, Cetin, 2017. "Predicting white metal prices by a commodity sensitive exchange rate," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 309-315.
    20. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    21. Lee, Dong Jin & Son, Jong Chil, 2013. "Nonlinearity and structural breaks in monetary policy rules with stock prices," Economic Modelling, Elsevier, vol. 31(C), pages 1-11.
    22. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
    23. Skrobotov, Anton, 2021. "Structural breaks in cointegration models: Multivariate case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 64, pages 83-106.

    More about this item

    Keywords

    Commodity prices; CPI and PPI inflation forecasts; Inflation targeting;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:183:y:2014:i:1:p:117-134. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.