IDEAS home Printed from
   My bibliography  Save this paper

Forecasting Commodity Prices with Mixed-Frequency Data: An OLS-Based Generalized ADL Approach


  • Yu-chin Chen

    (University of Washington)

  • Wen-Jen Tsay

    (Institute of Economics, Academia Sinica)


This paper presents a generalized autoregressive distributed lag (GADL) model for conducting regression estimations that involve mixed-frequency data. As an example, we show that daily asset market information - currency and equity market movements - can produce forecasts of quarterly commodity price changes that are superior to those in the previous literature. Following the traditional ADL literature, our estimation strategy relies on a Vandermonde matrix to parameterize the weighting functions for higher-frequency observations. Accordingly, inferences can be obtained under ordinary linear least squares principles without Kalman filtering or non-linear optimizations. Our findings provide an easy-to-use method for conducting mixed data-sampling analysis as well as for forecasting world commodity price movements.

Suggested Citation

  • Yu-chin Chen & Wen-Jen Tsay, "undated". "Forecasting Commodity Prices with Mixed-Frequency Data: An OLS-Based Generalized ADL Approach," Working Papers UWEC-2011-06, University of Washington, Department of Economics.
  • Handle: RePEc:udb:wpaper:uwec-2011-06

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Marcy Burchfield & Henry G. Overman & Diego Puga & Matthew A. Turner, 2006. "Causes of Sprawl: A Portrait from Space," The Quarterly Journal of Economics, Oxford University Press, vol. 121(2), pages 587-633.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & S├ębastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
    2. Chen, Yu-chin & Turnovsky, Stephen J. & Zivot, Eric, 2014. "Forecasting inflation using commodity price aggregates," Journal of Econometrics, Elsevier, vol. 183(1), pages 117-134.
    3. Chen Yu-Chin & Rogoff Kenneth, 2012. "Are The Commodity Currencies An Exception To The Rule?," Global Journal of Economics (GJE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 1-28.
    4. Buncic, Daniel & Moretto, Carlo, 2015. "Forecasting copper prices with dynamic averaging and selection models," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
    5. repec:dau:papers:123456789/15216 is not listed on IDEAS

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:udb:wpaper:uwec-2011-06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Goldblatt). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.