IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v40y2017icp63-72.html
   My bibliography  Save this article

Do precious metal prices help in forecasting South African inflation?

Author

Listed:
  • Balcilar, Mehmet
  • Katzke, Nico
  • Gupta, Rangan

Abstract

In this paper we test whether the key metals prices of gold and platinum significantly improve inflation forecasts for the South African economy. We also test whether controlling for conditional correlations in a dynamic setup, using bivariate Bayesian-Dynamic Conditional Correlation (B-DCC) models, improves inflation forecasts. To achieve this we compare out-of-sample forecast estimates of the B-DCC model to Random Walk, Autoregressive and Bayesian VAR models. We find that for both the BVAR and BDCC models, improving point forecasts of the Autoregressive model of inflation remains an elusive exercise. This, we argue, is of less importance relative to the more informative density forecasts. For this we find improved forecasts of inflation for the B-DCC models at all forecasting horizons tested. We thus conclude that including metals price series as inputs to inflation models leads to improved density forecasts, while controlling for the dynamic relationship between the included price series and inflation similarly leads to significantly improved density forecasts.

Suggested Citation

  • Balcilar, Mehmet & Katzke, Nico & Gupta, Rangan, 2017. "Do precious metal prices help in forecasting South African inflation?," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 63-72.
  • Handle: RePEc:eee:ecofin:v:40:y:2017:i:c:p:63-72
    DOI: 10.1016/j.najef.2017.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940817300414
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    2. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
    3. Ben S. Bernanke & Mark Gertler, 2001. "Should Central Banks Respond to Movements in Asset Prices?," American Economic Review, American Economic Association, vol. 91(2), pages 253-257, May.
    4. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    5. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    6. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    7. Ben S. Bernanke & Mark Gertler, 1999. "Monetary policy and asset price volatility," Economic Review, Federal Reserve Bank of Kansas City, issue Q IV, pages 17-51.
    8. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    9. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    10. Charles Bean, 2004. "Inflation Targeting: The UK Experience," Perspektiven der Wirtschaftspolitik, Verein für Socialpolitik, vol. 5(4), pages 405-421, November.
    11. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    12. Dick Dijk & Philip Hans Franses, 2003. "Selecting a Nonlinear Time Series Model using Weighted Tests of Equal Forecast Accuracy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 727-744, December.
    13. Stephen G. Cecchetti & Hans Genberg & Sushil Wadhwani, 2002. "Asset Prices in a Flexible Inflation Targeting Framework," NBER Working Papers 8970, National Bureau of Economic Research, Inc.
    14. Fred Furlong & Robert Ingenito, 1996. "Commodity prices and inflation," Economic Review, Federal Reserve Bank of San Francisco, pages 27-47.
    15. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    16. Lombardi, Marco J. & Ravazzolo, Francesco, 2016. "On the correlation between commodity and equity returns: Implications for portfolio allocation," Journal of Commodity Markets, Elsevier, vol. 2(1), pages 45-57.
    17. Christiane Baumeister & Lutz Kilian, 2011. "Real-Time Forecasts of the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 326-336, September.
    18. Francesco Ravazzolo & Marco J. Lombardi, 2012. "Oil price density forecasts: Exploring the linkages with stock markets," Working Papers No 3/2012, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    19. Gelos, Gaston & Ustyugova, Yulia, 2017. "Inflation responses to commodity price shocks – How and why do countries differ?," Journal of International Money and Finance, Elsevier, vol. 72(C), pages 28-47.
    20. Hooker, Mark A, 2002. "Are Oil Shocks Inflationary? Asymmetric and Nonlinear Specifications versus Changes in Regime," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 540-561, May.
    21. Chen, Yu-chin & Turnovsky, Stephen J. & Zivot, Eric, 2014. "Forecasting inflation using commodity price aggregates," Journal of Econometrics, Elsevier, vol. 183(1), pages 117-134.
    22. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    23. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    24. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    25. Fuhrer, Jeff & Moore, George, 1992. "Monetary policy rules and the indicator properties of asset prices," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 303-336, April.
    26. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    27. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR 'Fan' Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
    28. Nikolay Gospodinov & Serena Ng, 2013. "Commodity Prices, Convenience Yields, and Inflation," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 206-219, March.
    29. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    30. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian VAR; Dynamic Conditional Correlation; Density forecasting; Random Walk; Autoregressive model;

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit
    • E6 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:40:y:2017:i:c:p:63-72. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.