IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Common Drifting Volatility in Large Bayesian VARs

  • Andrea CARRIERO
  • Todd E. CLARK
  • Massimiliano MARCELLINO

The estimation of large Vector Autoregressions with stochastic volatility using standard methods is computationally very demanding. In this paper we propose to model conditional volatilities as driven by a single common unobserved factor. This is justified by the observation that the pattern of estimated volatilities in empirical analyses is often very similar across variables. Using a combination of a standard natural conjugate prior for the VAR coefficients, and an independent prior on a common stochastic volatility factor, we derive the posterior densities for the parameters of the resulting BVAR with common stochastic volatility (BVAR-CSV). Under the chosen prior the conditional posterior of the VAR coefficients features a Kroneker structure that allows for fast estimation, even in a large system. Using US and UK data, we show that, compared to a model with constant volatilities, our proposed common volatility model significantly improves model fit and forecast accuracy. The gains are comparable to or as great as the gains achieved with a conventional stochastic volatility specification that allows independent volatility processes for each variable. But our common volatility specification greatly speeds computations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cadmus.eui.eu/bitstream/handle/1814/21136/ECO_2012_08.pdf?sequence=1
File Function: main text08
Download Restriction: no

Paper provided by European University Institute in its series Economics Working Papers with number ECO2012/08.

as
in new window

Length:
Date of creation: 2012
Date of revision:
Handle: RePEc:eui:euiwps:eco2012/08
Contact details of provider: Postal: Badia Fiesolana, Via dei Roccettini, 9, 50014 San Domenico di Fiesole (FI) Italy
Phone: +39-055-4685.982
Fax: +39-055-4685.902
Web page: http://www.eui.eu/ECO/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
  2. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  3. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
  4. Nelson, Daniel B, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 403-06, October.
  5. Engle, Robert F, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 395-96, October.
  6. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
  7. Harvey, Andrew C & Ruiz, Esther, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 402-03, October.
  8. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  9. Ben Bernanke & Jean Boivin & Piotr S. Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, MIT Press, vol. 120(1), pages 387-422, January.
  10. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
  11. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," CEPR Discussion Papers 7446, C.E.P.R. Discussion Papers.
  12. Gary Koop & Dimitris Korobilis, 2012. "Large Time-Varying Parameter VARs," Working Paper Series 11_12, The Rimini Centre for Economic Analysis.
  13. Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
  14. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  15. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," Working Paper 96-13, Federal Reserve Bank of Atlanta.
  16. Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
  17. Shephard, Neil & Kim, Sangjoon, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 406-10, October.
  18. Clements, Michael P. & Hendry, David F. (ed.), 2011. "The Oxford Handbook of Economic Forecasting," OUP Catalogue, Oxford University Press, number 9780195398649, March.
  19. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
  20. Christopher A. Sims, 1989. "A nine variable probabilistic macroeconomic forecasting model," Discussion Paper / Institute for Empirical Macroeconomics 14, Federal Reserve Bank of Minneapolis.
  21. Malin Adolfson & Jesper Linde & Mattias Villani, 2007. "Forecasting Performance of an Open Economy DSGE Model," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 289-328.
  22. Tom Stark and Dean Croushore, 2001. "Forecasting with a Real-Time Data Set for Macroeconomists," Computing in Economics and Finance 2001 258, Society for Computational Economics.
  23. Geweke, John & Amisano, Gianni, 2008. "Comparing and evaluating Bayesian predictive distributions of assets returns," Working Paper Series 0969, European Central Bank.
  24. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  25. Danielsson, Jon, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 393-95, October.
  26. Christopher A. Sims, 2002. "The Role of Models and Probabilities in the Monetary Policy Process," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 33(2), pages 1-62.
  27. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, Elsevier.
  28. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  29. Todd E. Clark & Michael W. McCracken, 2009. "Nested forecast model comparisons: a new approach to testing equal accuracy," Research Working Paper RWP 09-11, Federal Reserve Bank of Kansas City.
  30. Eric Jacquier & Nicholas G. Polson & Peter Rossi, . "Stochastic Volatility: Univariate and Multivariate Extensions," Rodney L. White Center for Financial Research Working Papers 19-95, Wharton School Rodney L. White Center for Financial Research.
  31. Jacek Osiewalski & Anna Pajor, 2009. "Bayesian Analysis for Hybrid MSF-SBEKK Models of Multivariate Volatility," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 1(2), pages 179-202, November.
  32. Todd E. Clark & Michael W. McCracken, 2010. "Testing for unconditional predictive ability," Working Papers 2010-031, Federal Reserve Bank of St. Louis.
  33. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
  34. Geweke, John, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 397-99, October.
  35. Clark, Todd E. & Davig, Troy, 2011. "Decomposing the declining volatility of long-term inflation expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 981-999, July.
  36. Ghysels, Eric & Jasiak, Joanna, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 399-401, October.
  37. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, 05.
  38. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
  39. Uhlig, Harald, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 410-12, October.
  40. Andersen, Torben G, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 389-92, October.
  41. Anna Pajor, 2006. "Bayesian Analysis of the Conditional Correlation Between Stock Index Returns with Multivariate SV Models," Papers physics/0607176, arXiv.org.
  42. Marco Del Negro & Christopher Otrok, 2008. "Dynamic factor models with time-varying parameters: measuring changes in international business cycles," Staff Reports 326, Federal Reserve Bank of New York.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2012/08. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rhoda Lane)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.