IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Common Drifting Volatility in Large Bayesian VARs

  • Andrea CARRIERO
  • Todd E. CLARK
  • Massimiliano MARCELLINO

The estimation of large Vector Autoregressions with stochastic volatility using standard methods is computationally very demanding. In this paper we propose to model conditional volatilities as driven by a single common unobserved factor. This is justified by the observation that the pattern of estimated volatilities in empirical analyses is often very similar across variables. Using a combination of a standard natural conjugate prior for the VAR coefficients, and an independent prior on a common stochastic volatility factor, we derive the posterior densities for the parameters of the resulting BVAR with common stochastic volatility (BVAR-CSV). Under the chosen prior the conditional posterior of the VAR coefficients features a Kroneker structure that allows for fast estimation, even in a large system. Using US and UK data, we show that, compared to a model with constant volatilities, our proposed common volatility model significantly improves model fit and forecast accuracy. The gains are comparable to or as great as the gains achieved with a conventional stochastic volatility specification that allows independent volatility processes for each variable. But our common volatility specification greatly speeds computations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cadmus.eui.eu/bitstream/handle/1814/21136/ECO_2012_08.pdf?sequence=1
File Function: main text08
Download Restriction: no

Paper provided by European University Institute in its series Economics Working Papers with number ECO2012/08.

as
in new window

Length:
Date of creation: 2012
Date of revision:
Handle: RePEc:eui:euiwps:eco2012/08
Contact details of provider: Postal: Badia Fiesolana, Via dei Roccettini, 9, 50014 San Domenico di Fiesole (FI) Italy
Phone: +39-055-4685.982
Fax: +39-055-4685.902
Web page: http://www.eui.eu/ECO/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Malin Adolfson & Jesper Linde & Mattias Villani, 2007. "Forecasting Performance of an Open Economy DSGE Model," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 289-328.
  2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  3. Geweke, John, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 397-99, October.
  4. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  5. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
  6. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
  7. Marco Del Negro & Christopher Otrok, 2008. "Dynamic factor models with time-varying parameters: measuring changes in international business cycles," Staff Reports 326, Federal Reserve Bank of New York.
  8. Harvey, Andrew C & Ruiz, Esther, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 402-03, October.
  9. Marco Del Negro & Frank Schorfheide, 2002. "Priors from general equilibrium models for VARs," Working Paper 2002-14, Federal Reserve Bank of Atlanta.
  10. Todd E. Clark & Michael W. McCracken, 2009. "Nested forecast model comparisons: a new approach to testing equal accuracy," Research Working Paper RWP 09-11, Federal Reserve Bank of Kansas City.
  11. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
  12. Shephard, Neil & Kim, Sangjoon, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 406-10, October.
  13. Banbura, Marta & Giannone, Domenico & Reichlin, Lucrezia, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
  14. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, Elsevier.
  15. Eric Jacquier & Nicholas G. Polson & Peter Rossi, . "Stochastic Volatility: Univariate and Multivariate Extensions," Rodney L. White Center for Financial Research Working Papers 19-95, Wharton School Rodney L. White Center for Financial Research.
  16. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
  17. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  18. Geweke, John & Amisano, Gianni, 2008. "Comparing and evaluating Bayesian predictive distributions of assets returns," Working Paper Series 0969, European Central Bank.
  19. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
  20. Dean Croushore & Tom Stark, 1999. "A real-time data set for macroeconomists," Working Papers 99-4, Federal Reserve Bank of Philadelphia.
  21. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
  22. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  23. Koop, Gary & Korobilis, Dimitris, 2012. "Large time-varying parameter VARs," MPRA Paper 38591, University Library of Munich, Germany.
  24. Clark, Todd E. & Davig, Troy, 2011. "Decomposing the declining volatility of long-term inflation expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 981-999, July.
  25. Todd E. Clark & Michael W. McCracken, 2010. "Testing for unconditional predictive ability," Working Papers 2010-031, Federal Reserve Bank of St. Louis.
  26. Uhlig, Harald, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 410-12, October.
  27. Christopher A. Sims, 1989. "A nine variable probabilistic macroeconomic forecasting model," Discussion Paper / Institute for Empirical Macroeconomics 14, Federal Reserve Bank of Minneapolis.
  28. Ghysels, Eric & Jasiak, Joanna, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 399-401, October.
  29. Andersen, Torben G, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 389-92, October.
  30. Nelson, Daniel B, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 403-06, October.
  31. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  32. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
  33. Anna Pajor, 2006. "Bayesian Analysis of the Conditional Correlation Between Stock Index Returns with Multivariate SV Models," Papers physics/0607176, arXiv.org.
  34. Danielsson, Jon, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 393-95, October.
  35. Engle, Robert F, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 395-96, October.
  36. Christopher A. Sims, 2002. "The Role of Models and Probabilities in the Monetary Policy Process," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 33(2), pages 1-62.
  37. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," CEPR Discussion Papers 7446, C.E.P.R. Discussion Papers.
  38. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  39. Jacek Osiewalski & Anna Pajor, 2009. "Bayesian Analysis for Hybrid MSF-SBEKK Models of Multivariate Volatility," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 1(2), pages 179-202, November.
  40. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," Working Paper 96-13, Federal Reserve Bank of Atlanta.
  41. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
  42. Clements, Michael P. & Hendry, David F. (ed.), 2011. "The Oxford Handbook of Economic Forecasting," OUP Catalogue, Oxford University Press, number 9780195398649, March.
  43. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2012/08. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rhoda Lane)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.