IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v26y2007i2-4p289-328.html
   My bibliography  Save this article

Forecasting Performance of an Open Economy DSGE Model

Author

Listed:
  • Malin Adolfson
  • Jesper Linde
  • Mattias Villani

Abstract

This paper analyzes the forecasting performance of an open economy dynamic stochastic general equilibrium (DSGE) model, estimated with Bayesian methods, for the Euro area during 1994Q1-2002Q4. We compare the DSGE model and a few variants of this model to various reduced-form forecasting models such as vector autoregressions (VARs) and vector error correction models (VECM), estimated both by maximum likelihood and two different Bayesian approaches, and traditional benchmark models, e.g., the random walk. The accuracy of point forecasts, interval forecasts and the predictive distribution as a whole are assessed in an out-of-sample rolling event evaluation using several univariate and multivariate measures. The results show that the open economy DSGE model compares well with more empirical models and thus that the tension between rigor and fit in older generations of DSGE models is no longer present. We also critically examine the role of Bayesian model probabilities and other frequently used low-dimensional summaries, e.g., the log determinant statistic, as measures of overall forecasting performance.

Suggested Citation

  • Malin Adolfson & Jesper Linde & Mattias Villani, 2007. "Forecasting Performance of an Open Economy DSGE Model," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 289-328.
  • Handle: RePEc:taf:emetrv:v:26:y:2007:i:2-4:p:289-328
    DOI: 10.1080/07474930701220543
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930701220543
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:26:y:2007:i:2-4:p:289-328. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.