IDEAS home Printed from https://ideas.repec.org/p/kof/wpskof/20-472.html
   My bibliography  Save this paper

Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions

Author

Abstract

Machine Learning models are often considered to be “black boxes†that provide only little room for the incorporation of theory (cf. e.g. Mukherjee, 2017; Veltri, 2017). This article proposes so-called Dynamic Factor Trees (DFT) and Dynamic Factor Forests (DFF) for macroeconomic forecasting, which synthesize the recent machine learning, dynamic factor model and business cycle literature within a unified statistical machine learning framework for model-based recursive partitioning proposed in Zeileis, Hothorn and Hornik (2008). DFTs and DFFs are non-linear and state-dependent forecasting models, which reduce to the standard Dynamic Factor Model (DFM) as a special case and allow us to embed theory-led factor models in powerful tree-based machine learning ensembles conditional on the state of the business cycle. The out-of-sample forecasting experiment for short-term U.S. GDP growth predictions combines three distinct FRED-datasets, yielding a balanced panel with over 375 indicators from 1967 to 2018 (FRED, 2019; McCracken & Ng, 2016, 2019a, 2019b). Our results provide strong empirical evidence in favor of the proposed DFTs and DFFs and show that they significantly improve the predictive performance of DFMs by almost 20% in terms of MSFE. Interestingly, the improvements materialize in both expansionary and recessionary periods, suggesting that DFTs and DFFs tend to perform not only sporadically but systematically better than DFMs. Our findings are fairly robust to a number of sensitivity tests and hold exciting avenues for future research.

Suggested Citation

  • Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
  • Handle: RePEc:kof:wpskof:20-472
    DOI: 10.3929/ethz-b-000399304
    as

    Download full text from publisher

    File URL: https://doi.org/10.3929/ethz-b-000399304
    Download Restriction: no

    File URL: https://libkey.io/10.3929/ethz-b-000399304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Bates, Brandon J. & Plagborg-Møller, Mikkel & Stock, James H. & Watson, Mark W., 2013. "Consistent factor estimation in dynamic factor models with structural instability," Journal of Econometrics, Elsevier, vol. 177(2), pages 289-304.
    4. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    5. Achim Zeileis & Kurt Hornik, 2007. "Generalized M‐fluctuation tests for parameter instability," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 488-508, November.
    6. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    7. Achim Zeileis, 2005. "A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 445-466.
    8. Breitung, Jörg & Eickmeier, Sandra, 2011. "Testing for structural breaks in dynamic factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 71-84, July.
    9. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
    10. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    13. Boriss Siliverstovs & Daniel Wochner, 2019. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," KOF Working papers 19-463, KOF Swiss Economic Institute, ETH Zurich.
    14. James H. Stock & Mark W. Watson, 2017. "Twenty Years of Time Series Econometrics in Ten Pictures," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 59-86, Spring.
    15. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    16. Antonello D’Agostino & Domenico Giannone & Michele Lenza & Michele Modugno, 2016. "Nowcasting Business Cycles: A Bayesian Approach to Dynamic Heterogeneous Factor Models," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 569-594, Emerald Group Publishing Limited.
    17. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2006. "VARs, common factors and the empirical validation of equilibrium business cycle models," Journal of Econometrics, Elsevier, vol. 132(1), pages 257-279, May.
    18. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    19. Sax, Christoph & Steiner, Peter, 2013. "Temporal Disaggregation of Time Series," MPRA Paper 53389, University Library of Munich, Germany.
    20. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Working Papers 334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    21. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    22. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    23. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    24. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
    25. Siliverstovs, Boriss, 2017. "Dissecting models' forecasting performance," Economic Modelling, Elsevier, vol. 67(C), pages 294-299.
    26. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    27. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    28. Corradi, Valentina & Swanson, Norman R., 2014. "Testing for structural stability of factor augmented forecasting models," Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
    29. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    30. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    31. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
    32. Bin Chen & Yongmiao Hong, 2012. "Testing for Smooth Structural Changes in Time Series Models via Nonparametric Regression," Econometrica, Econometric Society, vol. 80(3), pages 1157-1183, May.
    33. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
    34. Jushan Bai & Peng Wang, 2016. "Econometric Analysis of Large Factor Models," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 53-80, October.
    35. Carolin Strobl & Florian Wickelmaier & Achim Zeileis, 2011. "Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 135-153, April.
    36. Jeffrey C. Chen & Abe Dunn & Kyle Hood & Alexander Driessen & Andrea Batch, 2019. "Off to the Races: A Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators," NBER Chapters, in: Big Data for Twenty-First-Century Economic Statistics, pages 373-402, National Bureau of Economic Research, Inc.
    37. Angelini, Elena & Henry, Jerome & Marcellino, Massimiliano, 2006. "Interpolation and backdating with a large information set," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2693-2724, December.
    38. Korobilis, D, 2017. "Forecasting with many predictors using message passing algorithms," Essex Finance Centre Working Papers 19565, University of Essex, Essex Business School.
    39. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    40. Bulligan, Guido & Marcellino, Massimiliano & Venditti, Fabrizio, 2015. "Forecasting economic activity with targeted predictors," International Journal of Forecasting, Elsevier, vol. 31(1), pages 188-206.
    41. Fossati, Sebastian, 2017. "Testing for State-Dependent Predictive Ability," Working Papers 2017-9, University of Alberta, Department of Economics.
    42. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    43. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    44. Dimitris Korobilis, 2021. "High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 493-504, March.
    45. Seibold Heidi & Hothorn Torsten & Zeileis Achim, 2016. "Model-Based Recursive Partitioning for Subgroup Analyses," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 45-63, May.
    46. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    47. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    48. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    49. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    50. Anders Bredahl Kock & Timo Teräsvirta, 2016. "Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
    51. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    52. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    53. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    54. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    55. Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
    56. Boriss Siliverstovs, 2020. "Assessing nowcast accuracy of US GDP growth in real time: the role of booms and busts," Empirical Economics, Springer, vol. 58(1), pages 7-27, January.
    57. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    58. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    59. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    60. Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
    61. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    62. Jushan Bai & Xu Han, 2016. "Structural Changes in High Dimensional Factor Models," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 11(1), pages 9-39, March.
    63. Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015. "Predicting Recessions in Germany With Boosted Regression Trees," Macroeconomics and Finance Series 201505, University of Hamburg, Department of Socioeconomics.
    64. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
    2. Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boriss Siliverstovs & Daniel S. Wochner, 2021. "State‐dependent evaluation of predictive ability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 547-574, April.
    2. Boriss Siliverstovs & Daniel Wochner, 2019. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," KOF Working papers 19-463, KOF Swiss Economic Institute, ETH Zurich.
    3. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    6. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    7. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    8. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    9. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    10. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    11. Varlam Kutateladze, 2021. "The Kernel Trick for Nonlinear Factor Modeling," Papers 2103.01266, arXiv.org.
    12. Kutateladze, Varlam, 2022. "The kernel trick for nonlinear factor modeling," International Journal of Forecasting, Elsevier, vol. 38(1), pages 165-177.
    13. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    14. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
    15. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    16. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    17. Maldonado, Javier & Ruiz Ortega, Esther, 2017. "Accurate Subsampling Intervals of Principal Components Factors," DES - Working Papers. Statistics and Econometrics. WS 23974, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    19. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    20. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.

    More about this item

    Keywords

    Forecasting; Machine Learning; Regression Trees and Forests; Dynamic Factor Model; Business Cycles; GDP Growth; United States;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kof:wpskof:20-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/koethch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.