Off to the Races: A Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators
In: Big Data for Twenty-First-Century Economic Statistics
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018.
"Macroeconomic Nowcasting and Forecasting with Big Data,"
Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
- Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2017. "Macroeconomic nowcasting and forecasting with big data," Staff Reports 830, Federal Reserve Bank of New York.
- Giannone, Domenico & Tambalotti, Andrea & Sbordone, Argia & Bok, Brandyn & Caratelli, Daniele, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," CEPR Discussion Papers 12589, C.E.P.R. Discussion Papers.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005.
"Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases,"
CEPR Discussion Papers
5178, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Rickard Nyman & Paul Ormerod, 2017. "Predicting Economic Recessions Using Machine Learning Algorithms," Papers 1701.01428, arXiv.org.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Alberto Cavallo & W. Erwin Diewert & Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2018.
"Using Online Prices for Measuring Real Consumption across Countries,"
AEA Papers and Proceedings, American Economic Association, vol. 108, pages 483-487, May.
- Alberto Cavallo & W. Erwin Diewert & Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2018. "Using Online Prices for Measuring Real Consumption Across Countries," NBER Working Papers 24292, National Bureau of Economic Research, Inc.
- Alberto Cavallo & Roberto Rigobon, 2016.
"The Billion Prices Project: Using Online Prices for Measurement and Research,"
Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 151-178, Spring.
- Alberto Cavallo & Roberto Rigobon, 2016. "The Billion Prices Project: Using Online Prices for Measurement and Research," NBER Working Papers 22111, National Bureau of Economic Research, Inc.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Achten, Sandra & Lessmann, Christian, 2020.
"Spatial inequality, geography and economic activity,"
World Development, Elsevier, vol. 136(C).
- Sandra Achten & Christian Lessmann, 2019. "Spatial inequality, geography and economic activity," CESifo Working Paper Series 7547, CESifo.
- Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Gallin, Joshua & Molloy, Raven & Nielsen, Eric & Smith, Paul & Sommer, Kamila, 2021. "Measuring aggregate housing wealth: New insights from machine learning ☆," Journal of Housing Economics, Elsevier, vol. 51(C).
- Abe C. Dunn & Eric English & Kyle K. Hood & Lowell Mason & Brian Quistorff, 2024.
"Expanding the Frontier of Economic Statistics Using Big Data: A Case Study of Regional Employment,"
BEA Papers
0128, Bureau of Economic Analysis.
- Abe Dunn & Eric English & Kyle Hood & Lowell Mason & Brian Quistorff, 2024. "Expanding the Frontier of Economic Statistics Using Big Data: A Case Study of Regional Employment," Working Papers 24-37, Center for Economic Studies, U.S. Census Bureau.
- Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
- Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
- Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
- Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- James T. E. Chapman & Ajit Desai, 2023.
"Macroeconomic Predictions Using Payments Data and Machine Learning,"
Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948, arXiv.org.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
- Carlos León & Fabio Ortega, 2018.
"Nowcasting Economic Activity with Electronic Payments Data: A Predictive Modeling Approach,"
Revista de Economía del Rosario, Universidad del Rosario, vol. 21(2), pages 381-407, December.
- Carlos León & Fabio Ortega, 2018. "Nowcasting economic activity with electronic payments data: A predictive modeling approach," Borradores de Economia 1037, Banco de la Republica de Colombia.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Leif Anders Thorsrud, 2016.
"Nowcasting using news topics Big Data versus big bank,"
Working Papers
No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
- James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
- Laurent Ferrara & Anna Simoni, 2023.
"When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
- Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Post-Print hal-03919944, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," EconomiX Working Papers 2020-11, University of Paris Nanterre, EconomiX.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Papers 2007.00273, arXiv.org, revised Sep 2022.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers hal-04159714, HAL.
- Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020.
"News Media vs. FRED-MD for Macroeconomic Forecasting,"
CESifo Working Paper Series
8639, CESifo.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Paper 2020/14, Norges Bank.
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Papers No 08/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Cláudia Duarte & Sónia Cabral, 2016. "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
- Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
- Hauber, Philipp, 2021. "How useful is external information from professional forecasters? Conditional forecasts in large factor models," EconStor Preprints 251469, ZBW - Leibniz Information Centre for Economics.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023.
"Testing big data in a big crisis: Nowcasting under Covid-19,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022. "Testing big data in a big crisis: Nowcasting under COVID-19," JRC Working Papers in Economics and Finance 2022-06, Joint Research Centre, European Commission.
- Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
- David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
- Raul Ibarra & Luis M. Gomez-Zamudio, 2017.
"Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico,"
Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 173-203, April.
- Gómez-Zamudio, Luis M. & Ibarra, Raúl, 2017. "Are daily financial data useful for forecasting GDP? Evidence from Mexico," LSE Research Online Documents on Economics 123310, London School of Economics and Political Science, LSE Library.
- Ibarra-Ramírez Raúl & Gómez-Zamudio Luis M., 2017. "Are daily financial data useful for forecasting GDP? Evidence from Mexico," Working Papers 2017-17, Banco de México.
More about this item
JEL classification:
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
- E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberch:14268. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.