IDEAS home Printed from https://ideas.repec.org/a/bkr/journl/v77y2018i4p42-59.html
   My bibliography  Save this article

Inflation Forecasting Using Machine Learning Methods

Author

Listed:
  • Ivan Baybuza

    (Ludwig Maximilian University of Munich)

Abstract

Inflation forecasting is an important practical problem. This paper proposes a solution to this problem for Russia using several basic machine learning methods: LASSO, Ridge, Elastic Net, Random Forest, and Boosting. Despite the fact that these methods already existed in the early 2000s, for a long time they remained almost unnoticed in the professional literature related to the forecasting of inflation in general, and Russian inflation in particular. This paper is one of the first attempts to apply machine learning methods to the forecasting of inflation in Russia. The present empirical study demostrates that the Random Forest model and the Boosting model are at least as good at inflation forecasting as more traditional models, such as Random Walk and autoregression. The main result of this paper is the confirmation of the possibility of more accurate forecasting of inflation in Russia using machine learning methods.

Suggested Citation

  • Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
  • Handle: RePEc:bkr:journl:v:77:y:2018:i:4:p:42-59
    DOI: 10.31477/rjmf.201804.42
    as

    Download full text from publisher

    File URL: https://rjmf.econs.online/upload/iblock/ca3/RJMF_77-04_ENG_Baybuza.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.31477/rjmf.201804.42?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    2. Chiranjit Chakraborty & Andreas Joseph, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    3. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    4. Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
    5. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    6. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    7. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihaela Simionescu, 2025. "Machine Learning vs. Econometric Models to Forecast Inflation Rate in Romania? The Role of Sentiment Analysis," Mathematics, MDPI, vol. 13(1), pages 1-18, January.
    2. Nikita Fokin & Andrey Polbin, 2019. "Forecasting Russia's Key Macroeconomic Indicators with the VAR-LASSO Model," Russian Journal of Money and Finance, Bank of Russia, vol. 78(2), pages 67-93, June.
    3. Andrew Kirillov, 2021. "A study on spatial autocorrelation: Case of Russian regional inflation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 64, pages 5-22.
    4. Mikhail Gareev, 2020. "Use of Machine Learning Methods to Forecast Investment in Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 35-56, March.
    5. Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
    6. Vasilii Chsherbakov & Ilia Karpov, 2024. "Regional inflation analysis using social network data," Papers 2403.00774, arXiv.org, revised Mar 2024.
    7. Urmat Dzhunkeev, 2024. "Forecasting Inflation in Russia Using Gradient Boosting and Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 53-76, March.
    8. Urmat Dzhunkeev, 2022. "Forecasting Unemployment in Russia Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 73-87, March.
    9. Maiorova, Ksenia & Fokin, Nikita, 2020. "Наукастинг Темпов Роста Стоимостных Объемов Экспорта И Импорта По Товарным Группам [Nowcasting the growth rates of the export and import by commodity groups]," MPRA Paper 109557, University Library of Munich, Germany.
    10. Viacheslav Kramkov, 2023. "Does CPI disaggregation improve inflation forecast accuracy?," Bank of Russia Working Paper Series wps112, Bank of Russia.
    11. Elizaveta Volgina, 2025. "Forecasting Inflation Using News Indices," Russian Journal of Money and Finance, Bank of Russia, vol. 84(1), pages 26-59, March.
    12. Emmanuel O. Akande & Elijah O. Akanni & Oyedamola F. Taiwo & Jeremiah D. Joshua & Abel Anthony, 2023. "Predicting inflation component drivers in Nigeria: a stacked ensemble approach," SN Business & Economics, Springer, vol. 3(1), pages 1-32, January.
    13. Tretyakov, Dmitriy & Fokin, Nikita, 2020. "Помогают Ли Высокочастотные Данные В Прогнозировании Российской Инфляции? [Does the high-frequency data is helpful for forecasting Russian inflation?]," MPRA Paper 109556, University Library of Munich, Germany.
    14. Evgeny Pavlov, 2020. "Forecasting Inflation in Russia Using Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 57-73, March.
    15. Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
    16. Reza Roshanpour & Amirreza Keyghobadi & Ali Abdi & Mohammad Ehsanbakhsh, 2025. "Enhancing inflation forecasting across short- and long-term horizons in IRAN: a hybrid approach integrating machine learning, deep learning, ARIMA, and optimized nonlinear grey Bernoulli model," SN Business & Economics, Springer, vol. 5(6), pages 1-21, June.
    17. Rodion Latypov & Elena Akhmedova & Egor Postolit & Marina Mikitchuk, 2024. "Bottom-up Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 23-44, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    2. Emmanuel O. Akande & Elijah O. Akanni & Oyedamola F. Taiwo & Jeremiah D. Joshua & Abel Anthony, 2023. "Predicting inflation component drivers in Nigeria: a stacked ensemble approach," SN Business & Economics, Springer, vol. 3(1), pages 1-32, January.
    3. Ayse Kabukcuoglu & Enrique Martínez-García, 2016. "What Helps Forecast U.S. Inflation?—Mind the Gap!," Koç University-TUSIAD Economic Research Forum Working Papers 1615, Koc University-TUSIAD Economic Research Forum.
    4. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    5. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    6. Ivan Kitov & Oleg Kitov, 2013. "Does Banque de France control inflation and unemployment?," Papers 1311.1097, arXiv.org.
    7. Francesco Bianchi & Giovanni Nicolo & Dongho Song, 2023. "Inflation and Real Activity over the Business Cycle," Finance and Economics Discussion Series 2023-038, Board of Governors of the Federal Reserve System (U.S.).
    8. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    9. Oleg KITOV & Ivan KITOV, 2012. "A Win-Win Monetary Policy In Canada," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 6(6(18)/ Su), pages 160-176.
    10. Lillian Kamal, 2014. "Do GAP Models Still have a Role to Play in Forecasting Inflation?," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 8(3), pages 1-12.
    11. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    12. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    13. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(3), pages 1145-1162.
    14. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    15. Altug, Sumru & Çakmaklı, Cem, 2016. "Forecasting inflation using survey expectations and target inflation: Evidence for Brazil and Turkey," International Journal of Forecasting, Elsevier, vol. 32(1), pages 138-153.
    16. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013. "Real-Time Inflation Forecasting in a Changing World," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
    17. Tsyplakov, Alexander, 2010. "The links between inflation and inflation uncertainty at the longer horizon," MPRA Paper 26908, University Library of Munich, Germany.
    18. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    19. Kitov, Ivan, 2009. "The anti-Phillips curve," MPRA Paper 13641, University Library of Munich, Germany.
    20. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:77:y:2018:i:4:p:42-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.