IDEAS home Printed from https://ideas.repec.org/a/bkr/journl/v79y2020i1p35-56.html
   My bibliography  Save this article

Use of Machine Learning Methods to Forecast Investment in Russia

Author

Listed:
  • Mikhail Gareev

    (Russian Presidential Academy of National Economy and Public Administration (RANEPA))

Abstract

This work forecasts the growth rate of quarterly gross fixed capital formation in Russia using machine learning methods (regularisation methods, ensemble methods) over a horizon of up to eight quarters. The methods tested show higher quality in terms of RMSFE than that of simple alternative models (autoregressive model, random walk model), with ensemble methods (boosting and random forest) leading in quality. The last statement is consistent with the results of other research on the application of big data in macroeconomics. It was found that removing observations from the sample which relate to the time before the 1998 crisis and that are atypical for the subsequent period of time does not worsen the short-term forecasts of machine learning methods. Estimates of the coefficients of generally accepted key investment factors obtained using regularisation methods are, on the whole, consistent with economic theory. The forecasts of the author's models are superior in quality to the annual forecasts of growth rates of gross fixed capital formation published by the Ministry of Economic Development.

Suggested Citation

  • Mikhail Gareev, 2020. "Use of Machine Learning Methods to Forecast Investment in Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 35-56, March.
  • Handle: RePEc:bkr:journl:v:79:y:2020:i:1:p:35-56
    DOI: 10.31477/rjmf.202001.35
    as

    Download full text from publisher

    File URL: https://rjmf.econs.online/upload/iblock/f6f/Machine-Learning-Forecast-Investment.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.31477/rjmf.202001.35?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
    2. Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
    3. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    4. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    5. Oreshkin, Maxim (Орешкин, Максим), 2018. "Prospects of Economic Policy [Перспективы Экономической Политики]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 3, pages 8-27, June.
    6. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    7. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    10. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    11. J. Maurice Clark, 1917. "Business Acceleration and the Law of Demand: A Technical Factor in Economic Cycles," Journal of Political Economy, University of Chicago Press, vol. 25(3), pages 217-217.
    12. Georgy Idrisov & Sergey Sinelnikov-Murylev, 2014. "Forming Sources for a Long-run Growth: How to Understand Them?," Working Papers 0096, Gaidar Institute for Economic Policy, revised 2014.
    13. Nikita Fokin & Andrey Polbin, 2019. "Forecasting Russia's Key Macroeconomic Indicators with the VAR-LASSO Model," Russian Journal of Money and Finance, Bank of Russia, vol. 78(2), pages 67-93, June.
    14. G. Idrisov & S. Sinelnikov-Murylev., 2014. "Forming Sources of Long-run Growth: How to Understand Them?," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 3.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    2. Filipp Ulyankin, 2020. "Forecasting Russian Macroeconomic Indicators Based on Information from News and Search Queries," Russian Journal of Money and Finance, Bank of Russia, vol. 79(4), pages 75-97, December.
    3. Urmat Dzhunkeev, 2022. "Forecasting Unemployment in Russia Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 73-87, March.
    4. Maiorova, Ksenia & Fokin, Nikita, 2020. "Наукастинг Темпов Роста Стоимостных Объемов Экспорта И Импорта По Товарным Группам [Nowcasting the growth rates of the export and import by commodity groups]," MPRA Paper 109557, University Library of Munich, Germany.
    5. Elizaveta Golovanova & Andrey Zubarev, 2021. "Forecasting Aggregate Retail Sales with Google Trends," Russian Journal of Money and Finance, Bank of Russia, vol. 80(4), pages 50-73, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    2. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    3. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    4. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    5. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    6. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    7. Marine Carrasco & Barbara Rossi, 2016. "In-Sample Inference and Forecasting in Misspecified Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
    8. Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Adaptive hierarchical priors for high-dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 212(1), pages 241-271.
    9. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    10. Matteo Luciani & Madhavi Pundit & Arief Ramayandi & Giovanni Veronese, 2018. "Nowcasting Indonesia," Empirical Economics, Springer, vol. 55(2), pages 597-619, September.
    11. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    12. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    13. Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016. "Nonlinear forecasting with many predictors using kernel ridge regression," International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    15. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
    16. Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
    17. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    18. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    19. Ouysse, Rachida, 2016. "Bayesian model averaging and principal component regression forecasts in a data rich environment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 763-787.
    20. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.

    More about this item

    Keywords

    investment forecasts; machine learning; LASSO; boosting; random forest;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:79:y:2020:i:1:p:35-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.