IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i4p797-814..html
   My bibliography  Save this article

Statistical sparsity

Author

Listed:
  • Peter McCullagh
  • Nicholas G Polson

Abstract

SummaryThe main contribution of this paper is a mathematical definition of statistical sparsity, which is expressed as a limiting property of a sequence of probability distributions. The limit is characterized by an exceedance measure $H$ and a rate parameter $\rho > 0$, both of which are unrelated to sample size. The definition encompasses all sparsity models that have been suggested in the signal-detection literature. Sparsity implies that $\rho$ is small, and a sparse approximation is asymptotic in the rate parameter, typically with error $o(\rho)$ in the sparse limit $\rho \to 0$. To first order in sparsity, the sparse signal plus Gaussian noise convolution depends on the signal distribution only through its rate parameter and exceedance measure. This is one of several asymptotic approximations implied by the definition, each of which is most conveniently expressed in terms of the zeta transformation of the exceedance measure. One implication is that two sparse families having the same exceedance measure are inferentially equivalent and cannot be distinguished to first order. Thus, aspects of the signal distribution that have a negligible effect on observables can be ignored with impunity, leaving only the exceedance measure to be considered. From this point of view, scale models and inverse-power measures seem particularly attractive.

Suggested Citation

  • Peter McCullagh & Nicholas G Polson, 2018. "Statistical sparsity," Biometrika, Biometrika Trust, vol. 105(4), pages 797-814.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:797-814.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy051
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:797-814.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.