IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i1p1-29.html
   My bibliography  Save this article

A family of estimators for multivariate kurtosis in a nonnormal linear regression model

Author

Listed:
  • Yanagihara, Hirokazu

Abstract

In this paper, we propose a new estimator for a kurtosis in a multivariate nonnormal linear regression model. Usually, an estimator is constructed from an arithmetic mean of the second power of the squared sample Mahalanobis distances between observations and their estimated values. The estimator gives an underestimation and has a large bias, even if the sample size is not small. We replace this squared distance with a transformed squared norm of the Studentized residual using a monotonic increasing function. Our proposed estimator is defined by an arithmetic mean of the second power of these squared transformed squared norms with a correction term and a tuning parameter. The correction term adjusts our estimator to an unbiased estimator under normality, and the tuning parameter controls the sizes of the squared norms of the residuals. The family of our estimators includes estimators based on ordinary least squares and predicted residuals. We verify that the bias of our new estimator is smaller than usual by constructing numerical experiments.

Suggested Citation

  • Yanagihara, Hirokazu, 2007. "A family of estimators for multivariate kurtosis in a nonnormal linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 1-29, January.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:1:p:1-29
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00086-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kano, Yutaka, 1992. "Robust statistics for test-of-independence and related structural models," Statistics & Probability Letters, Elsevier, vol. 15(1), pages 21-26, September.
    2. Yasunori Fujikoshi & Takafumi Noguchi & Megu Ohtaki & Hirokazu Yanagihara, 2003. "Corrected versions of cross-validation criteria for selecting multivariate regression and growth curve models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 537-553, September.
    3. Fujikoshi, Yasunori, 2000. "Transformations with Improved Chi-Squared Approximations," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 249-263, February.
    4. Yanagihara, Hirokazu, 2003. "Asymptotic expansion of the null distribution of test statistic for linear hypothesis in nonnormal linear model," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 222-246, February.
    5. Klar, Bernhard, 2002. "A Treatment of Multivariate Skewness, Kurtosis, and Related Statistics," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 141-165, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kakizawa, Yoshihide, 2009. "Third-order power comparisons for a class of tests for multivariate linear hypothesis under general distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 473-496, March.
    2. Kakizawa, Yoshihide, 2008. "Multiple comparisons of several heteroscedastic multivariate populations," Statistics & Probability Letters, Elsevier, vol. 78(11), pages 1328-1338, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:1:p:1-29. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.