IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v15y1992i1p21-26.html
   My bibliography  Save this article

Robust statistics for test-of-independence and related structural models

Author

Listed:
  • Kano, Yutaka

Abstract

Recent research of asymptotic robustness shows that the likelihood ratio (LR) test statistic for test-of-independence based on normal theory remains valid for a general case where only independence is assumed. In contrast, under elliptical populations the LR statistic is correct if a kurtosis adjustment is made. Thus, the LR statistic itself is available for the first case, whereas a certain correction is needed for the second framework, which is seriously inconvenient for practitioners. In this article, we propose an alternative adjustment to the LR statistic which can be utilized for both of the distribution families. The theory is derived in the context of general linear latent variate models.

Suggested Citation

  • Kano, Yutaka, 1992. "Robust statistics for test-of-independence and related structural models," Statistics & Probability Letters, Elsevier, vol. 15(1), pages 21-26, September.
  • Handle: RePEc:eee:stapro:v:15:y:1992:i:1:p:21-26
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(92)90279-E
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanagihara, Hirokazu & Tonda, Tetsuji & Matsumoto, Chieko, 2005. "The effects of nonnormality on asymptotic distributions of some likelihood ratio criteria for testing covariance structures under normal assumption," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 237-264, October.
    2. Ke-Hai Yuan & Peter Bentler, 2004. "On the asymptotic distributions of two statistics for two-level covariance structure models within the class of elliptical distributions," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 437-457, September.
    3. Ke-Hai Yuan & Yubin Tian & Hirokazu Yanagihara, 2015. "Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 379-405, June.
    4. Yanagihara, Hirokazu, 2007. "A family of estimators for multivariate kurtosis in a nonnormal linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 1-29, January.
    5. Yuan, Ke-Hai & Bentler, Peter M., 1999. "On asymptotic distributions of normal theory MLE in covariance structure analysis under some nonnormal distributions," Statistics & Probability Letters, Elsevier, vol. 42(2), pages 107-113, April.
    6. Yuan, Ke-Hai & Bentler, Peter M., 2005. "Asymptotic robustness of the normal theory likelihood ratio statistic for two-level covariance structure models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 328-343, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:15:y:1992:i:1:p:21-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.